PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o801.
Published online 2008 April 4. doi:  10.1107/S1600536808008805
PMCID: PMC2961331

5-Chloro-2-methoxy­anilinium nitrate

Abstract

The title salt, C7H9ClNO+·NO3 , exhibits extensive hydrogen bonding between the ammonium functional group and the nitrate anion. A two-dimensional network of bifurcated N—H(...)O hydrogen bonds generates corrugated layers in the bc plane. The organic mol­ecules are stacked in a parallel orientation as a result of π–π inter­actions, with an inter-ring distance of 3.837 Å.

Related literature

For related literature, see: Abid et al. (2007 [triangle]); Aloui et al. (2002 [triangle]); Desiraju & Steiner (1999 [triangle]); Hemissi et al. (2005 [triangle]); Jayaraman et al. (2002 [triangle]); Ouslati & Ben Nasr (2006 [triangle]); Steiner (2002 [triangle]); Kefi et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o801-scheme1.jpg

Experimental

Crystal data

  • C7H9ClNO+·NO3
  • M r = 220.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o801-efi3.jpg
  • a = 10.681 (2) Å
  • b = 9.474 (3) Å
  • c = 9.802 (3) Å
  • β = 102.38 (3)°
  • V = 968.8 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 293 (2) K
  • 0.2 × 0.18 × 0.16 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • Absorption correction: none
  • 4244 measured reflections
  • 2125 independent reflections
  • 1409 reflections with I > 2σ(I)
  • R int = 0.029
  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.109
  • S = 1.02
  • 2125 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]), DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008805/fj2102sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008805/fj2102Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hydrogen bonding is of intense interest because of their widespread occurrence in biological systems. So, it is very helpful to search simple molecules allowing to understanding the configuration and the function of some complex macromolecules.The hybrid compounds are rich in H-bonds and they could be used to this effect because of their potential importance in constructing sophisticated assemblies from discrete ionic or molecular building blocks due to its strength and directionality (Steiner. et al. 2002, Jayaraman, et al. 2002). In this work, the combination of 2-methoxy-5-chloroaniline and nitric acid has been chosen to elaborate the special hydrogen-bond pattern. The asymmetric unit of crystal structure, depicted in ORTEP drawing (Fig. 1), correspond to the formula unit C6H9ClNO+.NO3-. The main feature of this atomic arrangement is the existence of thick inorganic corrugated layers spreading around bc plane (Fig. 2). Inside layer, each NO3- anion is linked to three organic groups through bifurcated N–H···O H-bonding. The N···O and H···O bond lengths are in the ranges of 2.927 (3)–3.240 (3) Å and 2.04–2.57 Å, respectively. The organic species interact also with a weak C–H···O hydrogen bond with H···O separation of 2.42 Å. These interactions are weaker than those observed otherwise (Ouslati et al. 2006, Kefi et al. 2007). The orientation of molecules in this framework is governed by a nearly regular triangular arrangement of 2-methoxy-5-chlorophenylammonium groups [N···N distances between nitrogen ammonium atoms are in the range of 5.597 and 5.857 Å, N···N···N angles range from 57.75 to 62.25°] (Fig. 3). As well as electrostatic and van der Waals forces and hydrogen bonds, aromatic π-π stacking interactions participate to define the crystal packing. Indeed, in the atomic arrangement of the title compound, the phenyl ring of the organic molecules are stacked in the parallel orientation with inter-planar separation of 3.837 Å indicating there are π–π stacking interactions (Desiraju & Steiner, 1999). The –Cl, –NH3 and –OCH3 substituents form, respectively, different torsion angles with the benzene ring: Cl—C5—C6—C1 ((t1) = 178.71°), N2—C1—C2—C3 ((t2) = -179.74°) and C7—O4—C2—C3 ((t3) = 12.43°). (t1) and (t2) angle values show that the chloro and amino substituents are nearly coplanar with the aryl ring. The torsion angle (t3) value indicates that the methoxy group lies out the plane of the benzene ring. This conformation resembles that observed in other compounds (Abid et al. 2007, Aloui et al. 2002, Hemissi et al. 2005).

Experimental

An ethanolic 2-methoxy-5-chloroaniline solution (5 mmol, in 5 ml) was added to an aqueous HNO3 solution (0.5 M). The obtained solution is evaporated during several days in ambient condition until the formation of single crystals of the title compound.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89, C–H =0.96 Å (CH3 ) with with Uiso(H) = 1.5Ueq and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.5Ueq]

Figures

Fig. 1.
ORTEP-3 (Farrugia,(1999)) view of the title compound, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level, and H-atoms are shown as spheres with an arbitary radius.
Fig. 2.
A perspective view of the atomic arrangement of the title compound.
Fig. 3.
Nitrate anion environment in the title compound. [Symmetry operators: (i) x, y, z; (ii) -x, y + 1/2, -z + 1/2; (iii) -x, -y, -z].

Crystal data

C7H9ClNO+·NO3F000 = 456
Mr = 220.61Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.681 (2) Åθ = 9.1–10.8º
b = 9.474 (3) ŵ = 0.39 mm1
c = 9.802 (3) ÅT = 293 (2) K
β = 102.38 (3)ºPrism, black
V = 968.8 (5) Å30.2 × 0.18 × 0.16 mm
Z = 4

Data collection

Enraf–Nonius TurboCAD4 diffractometerθmax = 27.0º
Monochromator: graphiteθmin = 2.9º
non–profiled ω scansh = −13→13
Absorption correction: nonek = −12→0
4244 measured reflectionsl = −12→12
2125 independent reflections2 standard reflections
1409 reflections with I > 2σ(I) every 120 min
Rint = 0.029 intensity decay: 5%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.109  w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2112P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2125 reflectionsΔρmax = 0.18 e Å3
129 parametersΔρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.39657 (5)0.59783 (8)0.79445 (7)0.0703 (2)
N20.83926 (16)0.40697 (19)0.75239 (18)0.0478 (4)
H20.84150.33750.69180.072*
H10.83310.37050.83440.072*
H30.91070.45790.76300.072*
O40.83237 (15)0.55493 (16)0.52279 (16)0.0568 (4)
C10.72828 (18)0.4973 (2)0.6998 (2)0.0387 (4)
C20.72905 (19)0.5751 (2)0.5790 (2)0.0425 (5)
C30.6254 (2)0.6618 (2)0.5276 (2)0.0530 (6)
H40.62410.71580.44810.064*
C40.5237 (2)0.6682 (2)0.5941 (2)0.0532 (5)
H50.45370.72560.55850.064*
C50.52562 (19)0.5906 (2)0.7117 (2)0.0465 (5)
C60.62876 (18)0.5041 (2)0.7675 (2)0.0425 (5)
H60.63030.45230.84840.051*
C70.8528 (3)0.6480 (3)0.4147 (3)0.0714 (7)
H70.78830.63160.33160.107*
H80.93600.63090.39570.107*
H90.84770.74410.44430.107*
O10.82176 (15)0.19146 (16)0.53507 (16)0.0556 (4)
N10.88696 (17)0.09358 (19)0.60238 (19)0.0484 (4)
O20.8812 (2)−0.02617 (18)0.5536 (2)0.0835 (6)
O30.95687 (16)0.12025 (18)0.71720 (17)0.0648 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0462 (3)0.0888 (5)0.0816 (5)−0.0011 (3)0.0262 (3)−0.0182 (4)
N20.0487 (9)0.0465 (10)0.0493 (10)0.0074 (8)0.0128 (8)0.0016 (8)
O40.0608 (9)0.0616 (10)0.0553 (9)0.0042 (8)0.0284 (8)0.0059 (8)
C10.0394 (9)0.0342 (10)0.0416 (10)0.0017 (8)0.0067 (8)−0.0040 (8)
C20.0474 (11)0.0390 (10)0.0426 (11)−0.0011 (9)0.0133 (9)−0.0051 (9)
C30.0641 (14)0.0486 (13)0.0465 (12)0.0072 (11)0.0123 (10)0.0052 (10)
C40.0518 (12)0.0508 (13)0.0539 (13)0.0117 (10)0.0043 (10)−0.0034 (11)
C50.0389 (10)0.0487 (12)0.0525 (12)−0.0016 (9)0.0112 (9)−0.0156 (10)
C60.0465 (11)0.0410 (11)0.0411 (11)−0.0061 (9)0.0122 (9)−0.0044 (9)
C70.0947 (19)0.0575 (15)0.0752 (17)−0.0137 (14)0.0481 (15)−0.0009 (13)
O10.0598 (9)0.0502 (9)0.0562 (9)0.0115 (8)0.0108 (7)0.0016 (7)
N10.0526 (10)0.0451 (10)0.0522 (11)−0.0002 (9)0.0215 (9)−0.0025 (9)
O20.1170 (16)0.0446 (10)0.0859 (13)0.0093 (10)0.0152 (12)−0.0144 (10)
O30.0709 (11)0.0675 (11)0.0518 (10)0.0030 (8)0.0038 (8)−0.0049 (8)

Geometric parameters (Å, °)

Cl—C51.744 (2)C3—H40.9300
N2—C11.463 (2)C4—C51.364 (3)
N2—H20.8900C4—H50.9300
N2—H10.8900C5—C61.388 (3)
N2—H30.8900C6—H60.9300
O4—C21.349 (2)C7—H70.9600
O4—C71.431 (3)C7—H80.9600
C1—C61.370 (3)C7—H90.9600
C1—C21.397 (3)O1—N11.258 (2)
C2—C31.383 (3)N1—O21.228 (2)
C3—C41.383 (3)N1—O31.236 (2)
C1—N2—H2109.5C5—C4—H5119.9
C1—N2—H1109.5C3—C4—H5119.9
H2—N2—H1109.5C4—C5—C6121.21 (19)
C1—N2—H3109.5C4—C5—Cl120.13 (17)
H2—N2—H3109.5C6—C5—Cl118.66 (17)
H1—N2—H3109.5C1—C6—C5118.04 (19)
C2—O4—C7118.86 (18)C1—C6—H6121.0
C6—C1—C2122.12 (18)C5—C6—H6121.0
C6—C1—N2120.77 (18)O4—C7—H7109.5
C2—C1—N2117.11 (17)O4—C7—H8109.5
O4—C2—C3126.62 (19)H7—C7—H8109.5
O4—C2—C1115.18 (18)O4—C7—H9109.5
C3—C2—C1118.19 (19)H7—C7—H9109.5
C4—C3—C2120.2 (2)H8—C7—H9109.5
C4—C3—H4119.9O2—N1—O3120.9 (2)
C2—C3—H4119.9O2—N1—O1120.0 (2)
C5—C4—C3120.3 (2)O3—N1—O1119.02 (18)
C7—O4—C2—C312.4 (3)C2—C3—C4—C50.8 (3)
C7—O4—C2—C1−168.9 (2)C3—C4—C5—C60.1 (3)
C6—C1—C2—O4−178.65 (18)C3—C4—C5—Cl−179.46 (17)
N2—C1—C2—O41.4 (3)C2—C1—C6—C50.7 (3)
C6—C1—C2—C30.2 (3)N2—C1—C6—C5−179.35 (18)
N2—C1—C2—C3−179.74 (18)C4—C5—C6—C1−0.9 (3)
O4—C2—C3—C4177.7 (2)Cl—C5—C6—C1178.71 (15)
C1—C2—C3—C4−1.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.892.082.967 (3)173
N2—H1···O2i0.892.573.103 (3)120
N2—H2···O10.892.042.927 (3)171
N2—H2···O30.892.383.043 (3)131
N2—H3···O2ii0.892.553.240 (3)135
N2—H3···O3ii0.892.072.939 (3)165
C7—H9···O2iii0.962.423.361 (4)167

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y+1/2, −z+3/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2102).

References

  • Abid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117.
  • Aloui, Z., Abid, S. & Rzaigui, M. (2002). Mater. Res. Bull.37, 697–703.
  • Brandenburg, K. (1998). DIAMOND University of Bonn, Germany.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond Oxford University Press.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Software. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Hemissi, H., Abid, S. & Rzaigui, M. (2005). Anal. Sci.21, 137–138.
  • Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci.4, 413–422.
  • Kefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2007). Mater. Res. Bull.42, 404–412.
  • Ouslati, A. & Ben Nasr, C. (2006). Anal. Sci.22, 1–2.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steiner, T. (2002). Angew. Chem. Int. Ed.41, 48–76. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography