PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o907.
Published online 2008 April 26. doi:  10.1107/S1600536808011276
PMCID: PMC2961322

(2S,4aR,3S,8aR,9R,10R)-1,4-Diallyl-2,3-diphenyl­perhydro­quinoxaline

Abstract

In the title compound, C26H32N2, the cyclo­hexane and piperazine rings each adopt a chair conformation. Both phenyl rings and the two propen-3-yl residues are in equatorial positions. There are no C—H(...)N hydrogen bonds nor π–π inter­actions between the aromatic rings. The absolute configuration was assigned with reference to the starting material.

Related literature

For an olefin–copper (I) complex with high anisotropy, see: Ye et al. (2007 [triangle]). For examples of the structure of olefins, see: Bond & Davies (2001 [triangle]); Presenti et al. (2001 [triangle]); Wang & Ye (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o907-scheme1.jpg

Experimental

Crystal data

  • C26H32N2
  • M r = 372.54
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o907-efi1.jpg
  • a = 6.509 (4) Å
  • b = 17.437 (10) Å
  • c = 19.757 (12) Å
  • V = 2242 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.06 mm−1
  • T = 293 (2) K
  • 0.35 × 0.15 × 0.15 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.808, T max = 1.000 (expected range = 0.801–0.990)
  • 22256 measured reflections
  • 2923 independent reflections
  • 2452 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.154
  • S = 1.13
  • 2923 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808011276/bt2698sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011276/bt2698Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

Recently, we have reported large anisotropy of an olefin copper (I) complex (Ye, et al., 2007). As a part of our ongoing investigations in this field we have determined the crystal structure of the title compound (Fig. 1).

The distances of the C=C double bonds [C8-C9 1.284 (5)Å, C25-C26 1.235 (5)Å] are slightly shorter than those found in other olefin compounds (Bond et al., 2001; Presenti et al., 2001). This might be due to an increased thermal vibration of the terminal C atoms. The two phenyl and the two propen-3-yl residues are located in an equatorial postion. The cyclohexane ring and the piperazine ring adopt a chair conformation. The two aromatic rings are gauche to each other [torsion angle C11—C10—C17—C18 -58.0 (2)°]. The dihedral angle between the two aromatic rings is 50.66 (0.10)°.

Experimental

(4aR,8aR)-2,3-Diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline (Wang et al.(2008) (2.0 g, 6.9 mmol) was dissolved in methanol (30 ml) and NaBH4 (0.3 g) was added to the solution portionally. The mixture was stirred at room temperature for 3 h. The resulting solution was poured into ice water (200 mL), then extracted with dichlomethane (30 ml × 2). The organic phase was washed with saturated sodium chloride aqueous solution (20 mL) then dried with anhydrous sodium sulfate. After removing the solvent, the residue, potassium carbonate (3 g) and ethanol (20 mL) were placed to a 50 mL round bottom flask. After stirred for 15 min, a solution of allyl bromide (1.4 g, 11.5 mmol) in ethanol (10 mL) was added to the reaction mixture. The mixture was heated to reflux for ca 2 h until the starting material disappeared with TLC detection. The resulting solution was cooled and filtered off. The solvent was removed under reduced pressure to give a white semisolid product. The crude product was recrystallized by slowly evaporating an acetone solution to yield colorless block-like crystals.

Refinement

All H atoms were found in a difference electron-density map. Nevertheless, they were placed at idealized positons and refined using a riding model with Cmethine—H = 0.98Å, Cmethylene—H = 0.97Å, Caryl—H =0.93Å, Cethylene—H =0.93Å, and UisoH = 1.2 UeqC. Due to the absence of significant anomalous scattering effects, 2187 Friedel pairs were merged. The absolute configuration was set according the starting material.

Figures

Fig. 1.
Molecular conformation of the title compound with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound viewed along the a axis.

Crystal data

C26H32N2F000 = 808
Mr = 372.54Dx = 1.101 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 15922 reflections
a = 6.509 (4) Åθ = 3.3–27.5º
b = 17.437 (10) ŵ = 0.06 mm1
c = 19.757 (12) ÅT = 293 (2) K
V = 2242 (2) Å3Block, colorless
Z = 40.35 × 0.15 × 0.15 mm

Data collection

Rigaku SCXmini diffractometer2923 independent reflections
Radiation source: fine-focus sealed tube2452 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
Detector resolution: 13.6612 pixels mm-1θmax = 27.4º
T = 293(2) Kθmin = 3.3º
ω scansh = −8→8
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −22→22
Tmin = 0.809, Tmax = 1.000l = −25→25
22256 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.154  w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2312P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2923 reflectionsΔρmax = 0.15 e Å3
254 parametersΔρmin = −0.13 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5826 (4)0.80378 (13)0.84675 (11)0.0506 (5)
H1A0.72330.82380.84630.061*
C20.5523 (5)0.75694 (16)0.91185 (12)0.0647 (7)
H2A0.41770.73310.91100.078*
H2B0.65440.71650.91370.078*
C30.5705 (6)0.80629 (17)0.97458 (13)0.0761 (8)
H3A0.54170.77541.01430.091*
H3B0.71010.82530.97840.091*
C40.4241 (6)0.87304 (17)0.97238 (12)0.0745 (8)
H4A0.44460.90491.01200.089*
H4B0.28390.85420.97320.089*
C50.4569 (5)0.92060 (15)0.90914 (11)0.0643 (7)
H5A0.59320.94310.91020.077*
H5B0.35760.96210.90810.077*
C60.4339 (4)0.87160 (12)0.84510 (11)0.0486 (5)
H6A0.29340.85150.84360.058*
C70.3422 (5)0.98753 (13)0.78078 (14)0.0653 (7)
H7A0.36721.01320.73800.078*
H7B0.38791.02160.81650.078*
C80.1147 (5)0.97599 (18)0.78826 (18)0.0834 (9)
H8A0.05530.93670.76310.100*
C9−0.0048 (7)1.0156 (3)0.8263 (2)0.1171 (14)
H9A0.04831.05540.85230.141*
H9B−0.14441.00450.82790.141*
C100.4402 (4)0.86967 (12)0.72229 (11)0.0483 (5)
H10A0.29820.85090.72180.058*
C110.4779 (4)0.91552 (13)0.65788 (11)0.0533 (6)
C120.3334 (5)0.91742 (15)0.60669 (13)0.0693 (8)
H12A0.20950.89150.61200.083*
C130.3722 (7)0.95790 (18)0.54713 (15)0.0914 (11)
H13A0.27430.95850.51290.110*
C140.5517 (7)0.9965 (2)0.53880 (15)0.0981 (12)
H14A0.57651.02330.49900.118*
C150.6952 (6)0.9957 (2)0.58882 (17)0.0956 (11)
H15A0.81851.02190.58300.115*
C160.6586 (5)0.95579 (16)0.64889 (14)0.0734 (8)
H16A0.75670.95630.68310.088*
C170.5854 (4)0.80049 (12)0.72363 (11)0.0494 (5)
H17A0.72740.81920.72310.059*
C180.5511 (4)0.75131 (14)0.66111 (11)0.0541 (6)
C190.6996 (5)0.74603 (15)0.61113 (13)0.0677 (7)
H19A0.82350.77190.61650.081*
C200.6668 (6)0.70288 (18)0.55319 (15)0.0857 (10)
H20A0.76780.70020.52000.103*
C210.4855 (6)0.66430 (17)0.54495 (15)0.0826 (10)
H21A0.46370.63520.50620.099*
C220.3358 (6)0.66848 (16)0.59373 (14)0.0763 (8)
H22A0.21190.64280.58780.092*
C230.3702 (4)0.71126 (15)0.65195 (13)0.0642 (7)
H23A0.26960.71290.68530.077*
C240.6823 (5)0.68533 (14)0.78648 (14)0.0677 (7)
H24A0.65750.65760.74470.081*
H24B0.63730.65280.82340.081*
C250.9103 (5)0.6977 (2)0.79341 (19)0.0882 (10)
H25A0.96480.73970.77050.106*
C261.0331 (7)0.6584 (3)0.8261 (2)0.1236 (16)
H26A0.98700.61580.84990.148*
H26B1.17160.67140.82690.148*
N10.4696 (3)0.91737 (10)0.78298 (9)0.0510 (4)
N20.5531 (3)0.75566 (10)0.78624 (9)0.0512 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0577 (13)0.0487 (11)0.0453 (11)0.0009 (11)−0.0019 (11)0.0009 (9)
C20.0857 (18)0.0610 (15)0.0474 (12)0.0109 (15)−0.0022 (13)0.0088 (11)
C30.102 (2)0.0804 (18)0.0453 (13)0.0067 (19)−0.0094 (15)0.0070 (13)
C40.108 (2)0.0775 (17)0.0380 (11)0.0065 (18)−0.0012 (14)−0.0055 (12)
C50.0890 (19)0.0562 (14)0.0477 (13)0.0034 (14)−0.0046 (13)−0.0067 (11)
C60.0582 (13)0.0467 (11)0.0409 (11)0.0014 (11)−0.0041 (10)−0.0008 (9)
C70.096 (2)0.0444 (11)0.0551 (13)0.0100 (12)−0.0002 (15)0.0012 (11)
C80.089 (2)0.0738 (17)0.088 (2)0.0259 (17)−0.0153 (19)−0.0051 (17)
C90.103 (3)0.118 (3)0.130 (3)0.024 (3)0.021 (3)−0.012 (3)
C100.0579 (13)0.0453 (11)0.0419 (11)−0.0045 (10)−0.0003 (11)0.0008 (9)
C110.0703 (15)0.0473 (12)0.0422 (11)−0.0025 (12)−0.0015 (11)0.0024 (9)
C120.088 (2)0.0602 (15)0.0600 (15)−0.0094 (15)−0.0194 (14)0.0080 (12)
C130.138 (3)0.0806 (19)0.0553 (16)−0.014 (2)−0.0286 (19)0.0168 (15)
C140.155 (4)0.085 (2)0.0537 (16)−0.026 (3)−0.002 (2)0.0203 (16)
C150.113 (3)0.098 (2)0.075 (2)−0.038 (2)0.012 (2)0.0172 (18)
C160.0829 (19)0.0798 (18)0.0574 (14)−0.0230 (16)−0.0063 (15)0.0153 (14)
C170.0553 (12)0.0473 (11)0.0457 (11)−0.0027 (10)0.0035 (11)0.0010 (9)
C180.0682 (15)0.0476 (12)0.0464 (12)0.0014 (12)0.0053 (11)−0.0016 (10)
C190.0761 (18)0.0638 (15)0.0630 (15)−0.0032 (15)0.0167 (13)−0.0039 (13)
C200.113 (3)0.085 (2)0.0590 (16)−0.006 (2)0.0291 (18)−0.0160 (15)
C210.119 (3)0.0755 (19)0.0527 (15)0.002 (2)0.0028 (17)−0.0179 (14)
C220.090 (2)0.0706 (17)0.0681 (17)−0.0135 (16)−0.0041 (17)−0.0106 (14)
C230.0728 (16)0.0665 (15)0.0534 (13)−0.0082 (14)0.0096 (13)−0.0093 (12)
C240.097 (2)0.0477 (12)0.0581 (14)0.0146 (13)0.0004 (16)0.0027 (11)
C250.084 (2)0.0784 (19)0.102 (2)0.0273 (18)0.0133 (19)0.0080 (19)
C260.107 (3)0.137 (4)0.127 (4)0.027 (3)−0.026 (3)0.007 (3)
N10.0688 (12)0.0407 (9)0.0434 (9)0.0014 (8)−0.0006 (10)0.0024 (8)
N20.0653 (11)0.0411 (9)0.0474 (10)0.0034 (8)0.0014 (10)0.0016 (8)

Geometric parameters (Å, °)

C1—N21.473 (3)C12—C131.395 (4)
C1—C61.528 (3)C12—H12A0.9300
C1—C21.536 (3)C13—C141.358 (6)
C1—H1A0.9800C13—H13A0.9300
C2—C31.514 (4)C14—C151.360 (5)
C2—H2A0.9700C14—H14A0.9300
C2—H2B0.9700C15—C161.396 (4)
C3—C41.505 (4)C15—H15A0.9300
C3—H3A0.9700C16—H16A0.9300
C3—H3B0.9700C17—N21.478 (3)
C4—C51.515 (4)C17—C181.520 (3)
C4—H4A0.9700C17—H17A0.9800
C4—H4B0.9700C18—C231.381 (4)
C5—C61.534 (3)C18—C191.385 (4)
C5—H5A0.9700C19—C201.386 (4)
C5—H5B0.9700C19—H19A0.9300
C6—N11.482 (3)C20—C211.368 (5)
C6—H6A0.9800C20—H20A0.9300
C7—N11.479 (3)C21—C221.373 (5)
C7—C81.501 (5)C21—H21A0.9300
C7—H7A0.9700C22—C231.389 (4)
C7—H7B0.9700C22—H22A0.9300
C8—C91.284 (5)C23—H23A0.9300
C8—H8A0.9300C24—N21.487 (3)
C9—H9A0.9300C24—C251.506 (5)
C9—H9B0.9300C24—H24A0.9700
C10—N11.472 (3)C24—H24B0.9700
C10—C111.523 (3)C25—C261.235 (5)
C10—C171.533 (3)C25—H25A0.9300
C10—H10A0.9800C26—H26A0.9300
C11—C121.381 (4)C26—H26B0.9300
C11—C161.381 (4)
N2—C1—C6109.94 (18)C11—C12—C13120.4 (3)
N2—C1—C2111.09 (18)C11—C12—H12A119.8
C6—C1—C2110.4 (2)C13—C12—H12A119.8
N2—C1—H1A108.5C14—C13—C12120.5 (3)
C6—C1—H1A108.5C14—C13—H13A119.7
C2—C1—H1A108.5C12—C13—H13A119.7
C3—C2—C1111.9 (2)C13—C14—C15119.9 (3)
C3—C2—H2A109.2C13—C14—H14A120.1
C1—C2—H2A109.2C15—C14—H14A120.1
C3—C2—H2B109.2C14—C15—C16120.3 (3)
C1—C2—H2B109.2C14—C15—H15A119.8
H2A—C2—H2B107.9C16—C15—H15A119.8
C4—C3—C2111.5 (2)C11—C16—C15120.5 (3)
C4—C3—H3A109.3C11—C16—H16A119.7
C2—C3—H3A109.3C15—C16—H16A119.7
C4—C3—H3B109.3N2—C17—C18111.13 (17)
C2—C3—H3B109.3N2—C17—C10110.05 (18)
H3A—C3—H3B108.0C18—C17—C10109.82 (19)
C3—C4—C5111.0 (2)N2—C17—H17A108.6
C3—C4—H4A109.4C18—C17—H17A108.6
C5—C4—H4A109.4C10—C17—H17A108.6
C3—C4—H4B109.4C23—C18—C19117.9 (2)
C5—C4—H4B109.4C23—C18—C17121.1 (2)
H4A—C4—H4B108.0C19—C18—C17120.9 (2)
C4—C5—C6111.2 (2)C18—C19—C20121.2 (3)
C4—C5—H5A109.4C18—C19—H19A119.4
C6—C5—H5A109.4C20—C19—H19A119.4
C4—C5—H5B109.4C21—C20—C19119.9 (3)
C6—C5—H5B109.4C21—C20—H20A120.1
H5A—C5—H5B108.0C19—C20—H20A120.1
N1—C6—C1109.56 (19)C20—C21—C22120.2 (3)
N1—C6—C5111.58 (19)C20—C21—H21A119.9
C1—C6—C5110.58 (19)C22—C21—H21A119.9
N1—C6—H6A108.3C21—C22—C23119.7 (3)
C1—C6—H6A108.3C21—C22—H22A120.2
C5—C6—H6A108.3C23—C22—H22A120.2
N1—C7—C8116.1 (2)C18—C23—C22121.2 (3)
N1—C7—H7A108.3C18—C23—H23A119.4
C8—C7—H7A108.3C22—C23—H23A119.4
N1—C7—H7B108.3N2—C24—C25116.1 (2)
C8—C7—H7B108.3N2—C24—H24A108.3
H7A—C7—H7B107.4C25—C24—H24A108.3
C9—C8—C7125.7 (4)N2—C24—H24B108.3
C9—C8—H8A117.2C25—C24—H24B108.3
C7—C8—H8A117.2H24A—C24—H24B107.4
C8—C9—H9A120.0C26—C25—C24127.2 (4)
C8—C9—H9B120.0C26—C25—H25A116.4
H9A—C9—H9B120.0C24—C25—H25A116.4
N1—C10—C11111.29 (17)C25—C26—H26A120.0
N1—C10—C17110.49 (18)C25—C26—H26B120.0
C11—C10—C17109.16 (18)H26A—C26—H26B120.0
N1—C10—H10A108.6C10—N1—C7111.74 (19)
C11—C10—H10A108.6C10—N1—C6110.48 (16)
C17—C10—H10A108.6C7—N1—C6112.43 (19)
C12—C11—C16118.3 (2)C1—N2—C17111.06 (16)
C12—C11—C10121.0 (2)C1—N2—C24113.17 (19)
C16—C11—C10120.8 (2)C17—N2—C24110.99 (19)
C11—C10—C17—C18−58.0 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2698).

References

  • Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1041–o1042.
  • Presenti, C., Bravo, P., Corradi, E., Frigerioe, M., Meille, S. V., Panzeri, W. & Viani, F. (2001). J. Org. Chem.66, 5637–5640. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, o359. [PMC free article] [PubMed]
  • Ye, Q., Zhao, H., Qu, Z.-R., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Hong Chan, P. W. & Nakamura, T. (2007). Angew. Chem. Int. Ed.46, 6852–6856. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography