PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m748.
Published online 2008 April 30. doi:  10.1107/S1600536808011860
PMCID: PMC2961319

Chlorido(ethyl­diphenyl­phosphine-κP)(1-pyrrolidinecarbodithio­ato-κ2 S,S′)nickel(II)

Abstract

In the crystal structure of the title complex, [Ni(C5H8NS2)Cl(C14H15P)], the Ni atom is coordinated by an S,S′-chelating dithio­carbamate, a chloride and a diphenyl­ethyl­phosphine ligand in a distorted square-planar arrangement.

Related literature

For related literature, see: Allen (2002 [triangle]); Darkwa et al. (1999 [triangle]); Kropidłowska, Chojnacki et al. (2007 [triangle]); Kropidłowska, Janczak et al. (2007 [triangle]); Pastorek et al. (1996 [triangle], 1999 [triangle]); Reger & Collins (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m748-scheme1.jpg

Experimental

Crystal data

  • [Ni(C5H8NS2)Cl(C14H15P)]
  • M r = 454.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m748-efi1.jpg
  • a = 6.5218 (5) Å
  • b = 19.1695 (15) Å
  • c = 16.6178 (14) Å
  • β = 90.786 (6)°
  • V = 2077.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.34 mm−1
  • T = 299 (2) K
  • 0.50 × 0.21 × 0.17 mm

Data collection

  • Kuma KM-4-CCD diffractometer
  • Absorption correction: refined from ΔF (Walker & Stuart, 1983 [triangle]) T min = 0.553, T max = 0.804
  • 10912 measured reflections
  • 3637 independent reflections
  • 2989 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.113
  • S = 1.08
  • 3637 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011860/at2563sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011860/at2563Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Professor J. Pikies for his donation of the sample of NiCl2(PPh2Et)2 and J. Gołaszewska for her help during the crystallization. This work was supported by the Ministry of Science and Higher Education (Poland), grant No. 1 T09A 117 30. A. Kropidłowska thanks the Found­ation for Polish Science for a fellowship.

supplementary crystallographic information

Comment

Metal (Ni, Pd) complexes in which the atom is coordinated by a S,S-chelating dithiocarbamate, one halogenide and one phosphine have been investigated and used to obtain compounds with a sulfur rich kernel arising from the presence of two different S-donor ligands (Darkwa et al., 1999; Pastorek et al., 1999; Reger & Collins, 1995). Several structures of such species are stored in the Cambridge Structural Database (CSD-2007, Allen 2002).

Recently, we reported the synthesis of [Ni{S2CN(CH2)4}(Cl)(PPh3)] (Kropidłowska, Janczak et al., 2007) solvated by a chloroform molecule, which interacts with the complex by a weak C—H···S hydrogen bond. The structure of homologous hemisolvated [Ni{S2CN(CH2)4}(Br)(PPh3)] has also been reported (Pastorek et al., 1996). In the present paper we describe the structure of another nickel(II) complex - (1-pyrrolidinylcarbodithioato-S,S') -chlorido-(diphenylethylphosphine)nickel(II), [Ni{S2CN(CH2)4}(Cl)(PPh2Et)] (I) obtained by essentially quantitative metathesis of trans-dichloro-bis(diphenylethylphosphine)-nickel(II) and bis(1-pyrrolidinylcarbodithioato-S,S')nickel(II). The molecular structure of (I) with the atom numbering scheme is shown in Figure 1.

In this compound the metal(II) ion is four-coordinated within a typical square planar [NiClS2P] heterogeneous coordination sphere. The dithiocarbamate ligand acts as a bidentate chelate, coordinating to Ni via both S atoms and thus introducing a deformation of the coordination geometry. Atom S1 is located trans to the Cl ligand and atom S2 is trans to the diphenylethylphosphine ligand. Although (I) was obtained in the same manner as previously mentioned [Ni{S2CN(CH2)4}(Cl)(PPh3)] it did not retain the solvent within its crystal structure, similarily to previously described [Ni{S2CN(C4H8O)}(Cl)(PPh3)] (Kropidłowska, Chojnacki et al., 2007). The schematic drawing of the crystal packing in (I) is presented in Figure 2.

Experimental

Nickel chloride, NiCl2.6H2O (0.594 g, 0.0025 mol, purchased from POCh) was dissolved in 50 ml of methanol/water (10/1, v/v) and this solution was added dropwise to the ammonium salt of pyrrolidinylcarbodithioic acid C4H8NCS2NH4 (0.82 g, 0.005 mol, Fluka) dissolved in methanol/water. This mixture was stirred vigorously under argon atmosphere for ca 20 minutes, then filtered and the filtrate left for crystallization at 278 K. After a week the green crystalline product, namely Ni(S2CNC4H8)2 was collected. It was further dissolved (0.199 g, 0.00057 mol) in 10 ml of chloroform and mixed with solution of equimolar amount of NiCl2(PPh2Et)2 (0.315 g). The mixture which turned into deep violet colour, was stirred for 10 minutes and then filtered. To the filtrate 10 ml of Et2O was added. After two days violet crystals were collected and washed with several portions of ether.

Refinement

All H atoms were positioned geometrically and treated as riding with C—H = 0.93 - 0.97 Å, and with Uiso(H) values of 1.2×Ueq of the parent methylene carbon and Uiso(H) values of 1.5xUeq of the methyl group carbon.

Figures

Fig. 1.
Molecular structure and atom-numbering scheme for the title complex (I) with displacement ellipsoids drawn at 50% probability level. H atoms are represented as circles of arbitrary size.
Fig. 2.
Schematic drawing of the crystal packing down the a axis.

Crystal data

[Ni(C5H8NS2)Cl(C14H15P)]F000 = 944
Mr = 454.63Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3645 reflections
a = 6.5218 (5) Åθ = 3.5–23.0º
b = 19.1695 (15) ŵ = 1.34 mm1
c = 16.6178 (14) ÅT = 299 (2) K
β = 90.786 (6)ºBlock, violet
V = 2077.4 (3) Å30.50 × 0.21 × 0.17 mm
Z = 4

Data collection

Kuma KM-4-CCD diffractometer3637 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.042
T = 299(2) Kθmax = 25.0º
ω scansθmin = 3.1º
Absorption correction: part of the refinement model (ΔF)(Walker & Stuart, 1983)h = −6→7
Tmin = 0.553, Tmax = 0.804k = −22→22
10912 measured reflectionsl = −19→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0634P)2 + 0.6647P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3637 reflectionsΔρmax = 0.57 e Å3
226 parametersΔρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.41398 (6)0.542285 (19)0.69879 (2)0.04145 (15)
Cl10.45930 (14)0.44894 (4)0.77213 (6)0.0630 (3)
P10.19702 (11)0.59106 (4)0.78208 (5)0.0397 (2)
S10.38209 (13)0.62417 (5)0.60835 (5)0.0544 (2)
S20.64891 (13)0.50962 (4)0.60948 (5)0.0508 (2)
N10.6761 (4)0.61076 (14)0.49827 (16)0.0524 (7)
C10.0929 (4)0.67350 (15)0.74538 (17)0.0421 (7)
C20.2112 (5)0.73347 (17)0.7499 (2)0.0534 (8)
H20.34260.73140.77220.064*
C30.1353 (7)0.79645 (19)0.7214 (2)0.0658 (10)
H30.21480.83660.72550.079*
C4−0.0576 (7)0.7995 (2)0.6872 (3)0.0732 (11)
H4−0.10920.84180.66860.088*
C5−0.1733 (7)0.7405 (2)0.6805 (3)0.0743 (11)
H5−0.30290.74260.65660.089*
C6−0.0994 (5)0.67784 (19)0.7092 (2)0.0571 (9)
H6−0.17960.63790.70410.069*
C70.2986 (5)0.61533 (16)0.88112 (18)0.0447 (7)
C80.1922 (6)0.6611 (2)0.9294 (2)0.0651 (10)
H80.07250.68170.90970.078*
C90.2601 (8)0.6766 (2)1.0060 (2)0.0790 (12)
H90.18650.70761.03760.095*
C100.4359 (8)0.6466 (2)1.0358 (2)0.0769 (12)
H100.48190.65691.08760.092*
C110.5419 (7)0.6020 (3)0.9890 (3)0.0833 (13)
H110.66180.58181.00900.100*
C120.4748 (5)0.5858 (2)0.9115 (2)0.0637 (10)
H120.54950.55490.88020.076*
C13−0.0307 (5)0.53894 (19)0.8047 (2)0.0614 (9)
H13A−0.14410.57060.81410.074*
H13B−0.06570.51140.75750.074*
C14−0.0117 (6)0.4907 (2)0.8755 (3)0.0737 (11)
H14A−0.13810.46590.88210.111*
H14B0.01790.51740.92320.111*
H14C0.09730.45810.86660.111*
C150.5834 (5)0.58493 (17)0.55992 (19)0.0468 (7)
C160.6134 (7)0.6751 (2)0.4568 (2)0.0740 (11)
H16A0.47870.66990.43210.089*
H16B0.61060.71410.49400.089*
C170.7689 (10)0.6853 (3)0.3962 (4)0.125 (2)
H17A0.70550.68320.34310.151*
H17B0.82980.73120.40280.151*
C180.9245 (7)0.6337 (3)0.4024 (3)0.1021 (17)
H18A1.05270.65500.41980.123*
H18B0.94530.61220.35030.123*
C190.8606 (5)0.5801 (2)0.4617 (2)0.0609 (9)
H19A0.82850.53620.43530.073*
H19B0.96730.57220.50200.073*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0434 (2)0.0415 (2)0.0394 (2)0.00158 (16)−0.00237 (16)−0.00039 (16)
Cl10.0697 (6)0.0521 (5)0.0672 (6)0.0089 (4)0.0010 (4)0.0144 (4)
P10.0380 (4)0.0437 (4)0.0373 (4)−0.0021 (3)−0.0015 (3)0.0024 (3)
S10.0597 (5)0.0577 (5)0.0459 (5)0.0158 (4)0.0092 (4)0.0086 (4)
S20.0543 (5)0.0506 (5)0.0475 (5)0.0093 (4)0.0022 (4)−0.0024 (4)
N10.0547 (16)0.0542 (16)0.0486 (15)0.0051 (13)0.0081 (13)0.0023 (13)
C10.0450 (16)0.0463 (17)0.0351 (15)0.0027 (13)0.0054 (12)0.0009 (13)
C20.0593 (19)0.0530 (19)0.0481 (18)−0.0062 (16)0.0068 (15)0.0000 (15)
C30.085 (3)0.050 (2)0.063 (2)−0.0068 (19)0.019 (2)0.0035 (17)
C40.091 (3)0.054 (2)0.074 (3)0.022 (2)0.010 (2)0.0109 (19)
C50.073 (2)0.067 (3)0.082 (3)0.018 (2)−0.008 (2)0.013 (2)
C60.056 (2)0.057 (2)0.058 (2)0.0034 (16)−0.0081 (16)0.0028 (16)
C70.0473 (17)0.0488 (17)0.0381 (16)−0.0055 (13)−0.0004 (13)0.0008 (13)
C80.077 (2)0.070 (2)0.048 (2)0.0109 (19)−0.0018 (17)−0.0049 (18)
C90.116 (4)0.074 (3)0.047 (2)0.000 (3)0.008 (2)−0.008 (2)
C100.105 (3)0.078 (3)0.048 (2)−0.025 (3)−0.014 (2)0.001 (2)
C110.074 (3)0.111 (4)0.064 (3)0.001 (2)−0.029 (2)−0.002 (3)
C120.0516 (19)0.086 (3)0.054 (2)0.0034 (18)−0.0077 (16)−0.0089 (19)
C130.0479 (19)0.070 (2)0.066 (2)−0.0158 (16)−0.0042 (16)0.0143 (18)
C140.061 (2)0.066 (2)0.094 (3)−0.0119 (18)0.002 (2)0.027 (2)
C150.0475 (17)0.0486 (18)0.0443 (17)0.0054 (14)−0.0042 (13)−0.0050 (14)
C160.090 (3)0.069 (2)0.064 (2)0.011 (2)0.020 (2)0.015 (2)
C170.145 (5)0.091 (4)0.142 (5)0.014 (4)0.076 (4)0.045 (4)
C180.081 (3)0.127 (4)0.100 (4)0.016 (3)0.043 (3)0.042 (3)
C190.0510 (19)0.070 (2)0.062 (2)−0.0008 (17)0.0124 (16)−0.0050 (18)

Geometric parameters (Å, °)

Ni1—S12.1812 (9)C8—H80.9300
Ni1—Cl12.1828 (9)C9—C101.369 (6)
Ni1—P12.2014 (8)C9—H90.9300
Ni1—S22.2371 (9)C10—C111.353 (6)
P1—C11.822 (3)C10—H100.9300
P1—C71.826 (3)C11—C121.389 (5)
P1—C131.833 (3)C11—H110.9300
S1—C151.722 (3)C12—H120.9300
S2—C151.713 (3)C13—C141.501 (5)
N1—C151.295 (4)C13—H13A0.9700
N1—C161.468 (5)C13—H13B0.9700
N1—C191.477 (4)C14—H14A0.9600
C1—C21.386 (4)C14—H14B0.9600
C1—C61.386 (4)C14—H14C0.9600
C2—C31.385 (5)C16—C171.453 (6)
C2—H20.9300C16—H16A0.9700
C3—C41.375 (6)C16—H16B0.9700
C3—H30.9300C17—C181.420 (7)
C4—C51.362 (6)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C61.377 (5)C18—C191.488 (5)
C5—H50.9300C18—H18A0.9700
C6—H60.9300C18—H18B0.9700
C7—C121.371 (5)C19—H19A0.9700
C7—C81.382 (5)C19—H19B0.9700
C8—C91.375 (5)
S1—Ni1—Cl1170.25 (4)C9—C10—H10120.3
S1—Ni1—P194.10 (3)C10—C11—C12121.1 (4)
Cl1—Ni1—P194.62 (3)C10—C11—H11119.5
S1—Ni1—S278.70 (3)C12—C11—H11119.5
Cl1—Ni1—S292.99 (4)C7—C12—C11120.1 (4)
P1—Ni1—S2171.11 (4)C7—C12—H12120.0
C1—P1—C7102.11 (14)C11—C12—H12120.0
C1—P1—C13104.01 (16)C14—C13—P1116.0 (3)
C7—P1—C13103.83 (16)C14—C13—H13A108.3
C1—P1—Ni1113.44 (9)P1—C13—H13A108.3
C7—P1—Ni1116.52 (10)C14—C13—H13B108.3
C13—P1—Ni1115.28 (14)P1—C13—H13B108.3
C15—S1—Ni186.65 (11)H13A—C13—H13B107.4
C15—S2—Ni185.09 (11)C13—C14—H14A109.5
C15—N1—C16124.2 (3)C13—C14—H14B109.5
C15—N1—C19124.4 (3)H14A—C14—H14B109.5
C16—N1—C19111.4 (3)C13—C14—H14C109.5
C2—C1—C6118.3 (3)H14A—C14—H14C109.5
C2—C1—P1119.8 (2)H14B—C14—H14C109.5
C6—C1—P1121.9 (2)N1—C15—S2125.9 (2)
C3—C2—C1120.6 (3)N1—C15—S1124.7 (2)
C3—C2—H2119.7S2—C15—S1109.28 (18)
C1—C2—H2119.7C17—C16—N1104.2 (3)
C4—C3—C2119.9 (4)C17—C16—H16A110.9
C4—C3—H3120.1N1—C16—H16A110.9
C2—C3—H3120.1C17—C16—H16B110.9
C5—C4—C3120.1 (4)N1—C16—H16B110.9
C5—C4—H4119.9H16A—C16—H16B108.9
C3—C4—H4119.9C18—C17—C16111.2 (4)
C4—C5—C6120.3 (4)C18—C17—H17A109.4
C4—C5—H5119.8C16—C17—H17A109.4
C6—C5—H5119.8C18—C17—H17B109.4
C5—C6—C1120.8 (4)C16—C17—H17B109.4
C5—C6—H6119.6H17A—C17—H17B108.0
C1—C6—H6119.6C17—C18—C19108.8 (4)
C12—C7—C8118.2 (3)C17—C18—H18A109.9
C12—C7—P1121.3 (3)C19—C18—H18A109.9
C8—C7—P1120.4 (3)C17—C18—H18B109.9
C9—C8—C7121.1 (4)C19—C18—H18B109.9
C9—C8—H8119.4H18A—C18—H18B108.3
C7—C8—H8119.4N1—C19—C18103.6 (3)
C10—C9—C8120.1 (4)N1—C19—H19A111.0
C10—C9—H9120.0C18—C19—H19A111.0
C8—C9—H9120.0N1—C19—H19B111.0
C11—C10—C9119.4 (4)C18—C19—H19B111.0
C11—C10—H10120.3H19A—C19—H19B109.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2563).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Darkwa, J., Osei-Twum, E. Y. & Litrja, L. A. (1999). Polyhedron, 18, 1115–1122.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kropidłowska, A., Chojnacki, J., Gołaszewska, J. & Becker, B. (2007). Acta Cryst. E63, m1643.
  • Kropidłowska, A., Janczak, J., Gołaszewska, J. & Becker, B. (2007). Acta Cryst. E63, m1947.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED Oxford Diffraction Poland, Wrocław, Poland.
  • Pastorek, R., Trávníček, Z., Kvapilova, E., Šindelář, Z. & Březina, F. (1996). Polyhedron, 15, 3691–3695.
  • Pastorek, R., Trávníček, Z., Šindelář, Z. & Březina, F. (1999). Transition Met. Chem 24, 304–305.
  • Reger, D. L. & Collins, J. E. (1995). Inorg. Chem 34, 2473–2475.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography