PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m631–m632.
Published online 2008 April 10. doi:  10.1107/S1600536808008544
PMCID: PMC2961312

Bis{μ-2,2′-[(3-aza­pentane-1,5-di­yl)bis­(nitrilo­methyl­idyne)]diphenolato}dicopper(II) dimethyl sulfoxide disolvate

Abstract

The title compound, [Cu2(C18H19N3O2)2]·2C2H6OS or [Cu2(SalenN3H)2]·2DMSO, where SalenN3H is the multidentate Schiff base 2,2′-[(3-aza­pentane-1,5-di­yl)bis­(nitrilo­methyl­idyne)]diphenolate dianion and DMSO is dimethyl sulfoxide, is a solvated dinuclear CuII complex. The neutral complex is built from two Cu(SalenN3H) units related by an inversion center. All heteroatoms in the Schiff bases coordinate the CuII ions, which display highly distorted trigonal bipyramidal geometries. The solvent mol­ecules are located in the structural voids of the complex and are disordered over two positions with occupancies of 0.642 (15) and 0.358 (15). The previously characterized acetone disolvate of the same complex presents identical mol­ecular and crystal structures, and crystallizes with cell parameters very close to those of the DMSO disolvate reported here.

Related literature

The title compound was synthesized by direct synthesis, using metallic copper as starting material (Gutiérrez et al., 2001 [triangle]; Reyes-Ortega et al., 2005 [triangle]). The same dinuclear CuII complex was previously characterized with acetone solvent in place of DMSO (McKenzie & Selvey, 1985 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m631-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C18H19N3O2)2]·2C2H6OS
  • M r = 902.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m631-efi1.jpg
  • a = 12.817 (3) Å
  • b = 16.783 (4) Å
  • c = 9.827 (3) Å
  • β = 106.732 (18)°
  • V = 2024.5 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.21 mm−1
  • T = 298 (1) K
  • 0.16 × 0.16 × 0.12 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: ψ scan (XSCANS; Siemens, 1996 [triangle]) T min = 0.803, T max = 0.866
  • 7380 measured reflections
  • 3599 independent reflections
  • 2191 reflections with I > 2σ(I)
  • R int = 0.076
  • 1 standard reflections every 48 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.167
  • S = 1.05
  • 3599 reflections
  • 294 parameters
  • 30 restraints
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.82 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL-Plus.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008544/si2079sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008544/si2079Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Secretaría de Educación Pública (Sub-Secretaría de Educación Superior) and Vicerectoría de Investigación y Estudios de Posgrado, BUAP (project No. 09/NAT/07).

supplementary crystallographic information

Comment

The title compound was obtained during a general study about direct synthesis in coordination chemistry, i.e. effective synthesis of complexes using zero-valent metals, neutral ligands, and polar solvents as starting materials (Gutiérrez et al., 2001). We expect that new molecular arrangements, as well as new compounds including solvent molecules as ligands, may be achieved using such reactions (Reyes-Ortega et al., 2005). We are also interested in the influence of lattice solvents on magnetic properties of paramagnetic coordination compounds.

The title compound is a dinuclear centrosymmetric CuII complex, formed through coordination of two Schiff base dianions SalenN3H to two CuII ions; the complex is solvated by two DMSO molecules (Fig. 1). In the complex, all heteroatoms of the Schiff base ligands are coordinated to the metallic centers, which present a highly distorted trigonal-bipyramidal geometry. Atoms O1, O2 and N2 form the equatorial plane, while atoms N1 and N3 occupy apical positions, with an angle N1—Cu1—N3 = 176.4 (2)°. DMSO molecules are located in the structural voids of the complex (Fig. 2), and poorly interact with the Schiff bases, as reflected in the disorder found for this molecule (Fig. 1, inset).

The whole complex presents a rigid conformation, as ten coordination bonds are formed. It may thus be expected to be a good candidate for hosting small solvent molecules with a steric volume similar to that of DMSO. This hypothesis is, at least partially, confirmed by the previous X-ray characterization of the acetone disolvate of the same complex (McKenzie & Selvey, 1985). This compound crystallizes in the same space group, with cell parameters very close to those of the title disolvate. The complex conformation is identical, regardless of the solvent inserted in voids. For example, the non-bonding Cu···Cu separation is virtually not modified: 5.7716 (18) Å in the DMSO disolvate, vs. 5.809 Å in the acetone disolvate.

Experimental

The title compound was prepared by direct synthesis, mixing equimolecular amounts (0.8 mmol) of elemental copper and neutral Schiff base SalenN3H3 in DMSO (2.4 ml). The mixture was heated at 353 K with magnetic stirring for 5.5 hrs, and then filtered. A crystalline compound, was collected after six days. Yield: 30%.

Refinement

The asymmetric unit contains one DMSO molecule which is clearly disordered over two positions (Fig. 1, inset). S, O and C atoms were splitted over two sites. Refined occupancies converged to 0.642 (15) and 0.358 (15) for sites A and B, respectively. Geometry was regularized through restraints applied to bond lengths: S—O = 1.475 (20) and S—C = 1.750 (20) Å. Finally, sites in each pair of disordered atoms were restrained, with a standard deviation of 0.04 Å2, to have the same Uij components. All H atoms were placed in idealized positions, and were allowed to ride on their carrier atoms, with C—H bond lengths fixed to 0.93 (aromatic CH), 0.97 (methylene CH2) or 0.96 Å (methyl CH3), and N—H bond length fixed to 0.91 Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl groups and x = 1.2 otherwise.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are given at the 40% probability level and all H atoms have been omitted. A single position for DMSO molecules has been retained, which corresponds to the main site occupancy factors, ...
Fig. 2.
A spacefill model for the title compound. All atoms are represented, excepted less occupied disordered sites for DMSO molecules. Colours code: purple: Cu; green: Schiff bases; other: DMSO.

Crystal data

[Cu2(C18H19N3O2)2]·2C2H6OSDx = 1.480 Mg m3
Mr = 902.06Melting point: 410 K
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 72 reflections
a = 12.817 (3) Åθ = 4.8–10.8º
b = 16.783 (4) ŵ = 1.21 mm1
c = 9.827 (3) ÅT = 298 (1) K
β = 106.732 (18)ºCell measurement pressure: 101(2) kPa
V = 2024.5 (8) Å3Irregular, green
Z = 20.16 × 0.16 × 0.12 mm
F000 = 940

Data collection

Bruker P4 diffractometer2191 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Monochromator: graphiteθmax = 25.1º
T = 298(1) Kθmin = 2.1º
P = 101(2) kPah = −14→15
2θ/ω scansk = −20→20
Absorption correction: ψ scan(XSCANS; Siemens, 1996)l = −11→7
Tmin = 0.803, Tmax = 0.8661 standard reflections
7380 measured reflections every 48 reflections
3599 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.167  w = 1/[σ2(Fo2) + (0.0556P)2 + 5.336P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3599 reflectionsΔρmax = 0.47 e Å3
294 parametersΔρmin = −0.82 e Å3
30 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.59573 (6)0.38379 (4)0.71636 (8)0.0438 (3)
O10.7294 (3)0.4094 (3)0.8606 (5)0.0597 (12)
O20.4577 (3)0.3281 (2)0.7063 (4)0.0487 (11)
N10.6595 (4)0.2864 (3)0.6677 (5)0.0394 (11)
N20.5491 (4)0.3917 (3)0.4705 (5)0.0391 (11)
H2B0.58980.43110.44780.047*
N30.5343 (4)0.4857 (3)0.7562 (5)0.0386 (11)
C10.8131 (5)0.3647 (4)0.9119 (6)0.0460 (15)
C20.8969 (5)0.3907 (4)1.0277 (7)0.0609 (18)
H2A0.89080.44011.06770.073*
C30.9878 (6)0.3459 (5)1.0844 (8)0.067 (2)
H3A1.04190.36551.16200.080*
C41.0014 (5)0.2734 (5)1.0301 (8)0.073 (2)
H4A1.06360.24321.07040.088*
C50.9219 (5)0.2457 (4)0.9153 (8)0.0605 (18)
H5A0.93120.19660.87630.073*
C60.8269 (5)0.2894 (4)0.8548 (6)0.0427 (14)
C70.7516 (5)0.2566 (3)0.7316 (6)0.0433 (14)
H7A0.77150.20970.69510.052*
C80.5930 (5)0.2526 (4)0.5346 (6)0.0476 (15)
H8A0.52150.23830.54200.057*
H8B0.62720.20520.51040.057*
C90.5838 (5)0.3163 (3)0.4234 (6)0.0448 (15)
H9A0.65380.32330.40560.054*
H9B0.53150.29980.33530.054*
C100.4349 (4)0.4115 (3)0.4060 (6)0.0408 (14)
H10A0.41410.45270.46240.049*
H10B0.39100.36470.40900.049*
C110.4088 (5)0.4401 (3)0.2531 (6)0.0423 (14)
H11A0.43020.39960.19590.051*
H11B0.33090.44830.21530.051*
C120.4532 (5)0.4911 (4)0.8083 (6)0.0432 (15)
H12A0.43950.54110.84010.052*
C130.3816 (4)0.4273 (4)0.8226 (6)0.0401 (14)
C140.2997 (5)0.4461 (5)0.8867 (7)0.0600 (19)
H14A0.29650.49730.92150.072*
C150.2255 (5)0.3910 (5)0.8987 (8)0.0622 (19)
H15A0.17220.40410.94220.075*
C160.2297 (6)0.3161 (5)0.8466 (8)0.065 (2)
H16A0.17960.27820.85690.078*
C170.3054 (5)0.2953 (4)0.7795 (7)0.0532 (17)
H17A0.30310.24470.74030.064*
C180.3875 (5)0.3496 (3)0.7685 (6)0.0415 (14)
S1A0.8609 (5)0.4752 (5)0.4851 (8)0.068 (2)0.642 (15)
O3A0.7492 (8)0.4440 (7)0.4334 (14)0.126 (5)0.642 (15)
C19A0.921 (3)0.449 (2)0.665 (2)0.084 (8)0.642 (15)
H19A0.92660.39260.67380.126*0.642 (15)
H19B0.87670.46930.72130.126*0.642 (15)
H19C0.99240.47270.69740.126*0.642 (15)
C20A0.845 (2)0.5781 (8)0.505 (2)0.054 (5)0.642 (15)
H20A0.81090.60140.41370.081*0.642 (15)
H20B0.91540.60210.54470.081*0.642 (15)
H20C0.80070.58710.56700.081*0.642 (15)
S1B0.8199 (9)0.4739 (10)0.4918 (19)0.082 (4)0.358 (15)
O3B0.8755 (13)0.4476 (9)0.386 (2)0.089 (7)0.358 (15)
C19B0.901 (5)0.431 (4)0.650 (6)0.12 (2)0.358 (15)
H19D0.88150.37580.65320.182*0.358 (15)
H19E0.88840.45840.72990.182*0.358 (15)
H19F0.97610.43510.65380.182*0.358 (15)
C20B0.852 (5)0.5716 (17)0.550 (5)0.107 (18)0.358 (15)
H20D0.82450.60780.47260.161*0.358 (15)
H20E0.92990.57720.58550.161*0.358 (15)
H20F0.82000.58350.62490.161*0.358 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0420 (4)0.0405 (4)0.0467 (5)0.0053 (3)0.0092 (3)−0.0004 (4)
O10.050 (3)0.062 (3)0.056 (3)0.015 (2)−0.003 (2)−0.018 (2)
O20.047 (2)0.046 (2)0.058 (3)0.003 (2)0.023 (2)−0.002 (2)
N10.042 (3)0.036 (3)0.039 (3)0.005 (2)0.010 (2)0.005 (2)
N20.046 (3)0.036 (3)0.037 (3)0.000 (2)0.014 (2)−0.008 (2)
N30.038 (3)0.040 (3)0.035 (3)0.004 (2)0.007 (2)0.003 (2)
C10.045 (3)0.063 (4)0.031 (3)0.005 (3)0.012 (3)−0.001 (3)
C20.056 (4)0.071 (5)0.048 (4)0.013 (4)0.004 (3)−0.010 (4)
C30.058 (4)0.084 (6)0.054 (4)0.004 (4)0.007 (4)−0.004 (4)
C40.048 (4)0.094 (6)0.066 (5)0.029 (4)−0.001 (4)0.010 (5)
C50.050 (4)0.062 (4)0.066 (5)0.012 (3)0.012 (4)0.006 (4)
C60.041 (3)0.051 (4)0.038 (3)0.009 (3)0.015 (3)0.009 (3)
C70.047 (3)0.031 (3)0.053 (4)0.005 (3)0.017 (3)0.006 (3)
C80.045 (3)0.045 (4)0.049 (4)0.005 (3)0.007 (3)−0.004 (3)
C90.048 (3)0.049 (4)0.036 (3)0.009 (3)0.010 (3)−0.001 (3)
C100.040 (3)0.033 (3)0.049 (4)0.000 (2)0.011 (3)−0.003 (3)
C110.044 (3)0.039 (3)0.041 (4)0.001 (3)0.007 (3)0.000 (3)
C120.053 (4)0.042 (3)0.027 (3)0.009 (3)−0.001 (3)−0.001 (3)
C130.034 (3)0.057 (4)0.029 (3)0.008 (3)0.008 (2)0.007 (3)
C140.051 (4)0.084 (5)0.045 (4)0.008 (4)0.014 (3)−0.010 (4)
C150.050 (4)0.079 (5)0.069 (5)0.010 (4)0.035 (4)0.007 (4)
C160.055 (4)0.077 (5)0.064 (5)−0.006 (4)0.020 (4)0.021 (4)
C170.050 (4)0.055 (4)0.051 (4)0.000 (3)0.010 (3)0.014 (3)
C180.046 (3)0.037 (3)0.034 (3)0.007 (3)0.001 (3)0.006 (3)
S1A0.046 (3)0.070 (3)0.085 (4)−0.009 (3)0.014 (3)0.012 (2)
O3A0.057 (6)0.100 (8)0.201 (13)−0.036 (6)0.005 (7)0.026 (8)
C19A0.098 (16)0.063 (14)0.105 (14)0.017 (15)0.050 (11)0.046 (11)
C20A0.056 (8)0.052 (7)0.044 (12)0.003 (6)−0.002 (8)0.028 (6)
S1B0.052 (9)0.069 (5)0.128 (7)−0.018 (7)0.032 (8)0.008 (4)
O3B0.113 (14)0.050 (9)0.103 (15)0.007 (9)0.029 (11)−0.011 (10)
C19B0.12 (3)0.11 (4)0.16 (4)−0.05 (2)0.07 (3)0.04 (3)
C20B0.11 (3)0.15 (3)0.06 (3)0.00 (2)0.02 (2)0.04 (2)

Geometric parameters (Å, °)

Cu1—O11.932 (4)C10—H10B0.9700
Cu1—N11.948 (5)C11—N3i1.458 (7)
Cu1—N22.319 (4)C11—H11A0.9700
Cu1—N31.969 (5)C11—H11B0.9700
Cu1—O21.978 (4)C12—C131.444 (8)
Cu1—Cu1i5.7716 (18)C12—H12A0.9300
O1—C11.286 (7)C13—C141.407 (8)
O2—C181.277 (7)C13—C181.418 (8)
N1—C71.270 (7)C14—C151.357 (9)
N1—C81.455 (7)C14—H14A0.9300
N2—C101.456 (7)C15—C161.363 (10)
N2—C91.460 (7)C15—H15A0.9300
N2—H2B0.9100C16—C171.367 (9)
N3—C121.288 (7)C16—H16A0.9300
N3—C11i1.458 (7)C17—C181.418 (8)
C1—C21.392 (8)C17—H17A0.9300
C1—C61.413 (8)S1A—O3A1.471 (10)
C2—C31.363 (9)S1A—C20A1.756 (13)
C2—H2A0.9300S1A—C19A1.766 (15)
C3—C41.361 (10)C19A—H19A0.9600
C3—H3A0.9300C19A—H19B0.9600
C4—C51.366 (9)C19A—H19C0.9600
C4—H4A0.9300C20A—H20A0.9600
C5—C61.400 (8)C20A—H20B0.9600
C5—H5A0.9300C20A—H20C0.9600
C6—C71.424 (8)S1B—O3B1.483 (16)
C7—H7A0.9300S1B—C20B1.75 (2)
C8—C91.509 (8)S1B—C19B1.76 (2)
C8—H8A0.9700C19B—H19D0.9600
C8—H8B0.9700C19B—H19E0.9600
C9—H9A0.9700C19B—H19F0.9600
C9—H9B0.9700C20B—H20D0.9600
C10—C111.521 (8)C20B—H20E0.9600
C10—H10A0.9700C20B—H20F0.9600
O1—Cu1—O2137.2 (2)N2—C9—H9A109.5
O2—Cu1—N290.92 (17)C8—C9—H9A109.5
N2—Cu1—O1131.28 (19)N2—C9—H9B109.5
N1—Cu1—N3176.4 (2)C8—C9—H9B109.5
O1—Cu1—N191.16 (18)H9A—C9—H9B108.1
O1—Cu1—N388.98 (18)N2—C10—C11114.2 (5)
N1—Cu1—O291.38 (18)N2—C10—H10A108.7
N3—Cu1—O291.00 (18)C11—C10—H10A108.7
N1—Cu1—N278.03 (17)N2—C10—H10B108.7
N3—Cu1—N299.17 (17)C11—C10—H10B108.7
O1—Cu1—Cu1i119.32 (15)H10A—C10—H10B107.6
N1—Cu1—Cu1i120.37 (14)N3i—C11—C10111.1 (5)
N3—Cu1—Cu1i56.61 (13)N3i—C11—H11A109.4
O2—Cu1—Cu1i95.61 (12)C10—C11—H11A109.4
N2—Cu1—Cu1i42.83 (11)N3i—C11—H11B109.4
C1—O1—Cu1128.4 (4)C10—C11—H11B109.4
C18—O2—Cu1125.9 (4)H11A—C11—H11B108.0
C7—N1—C8120.8 (5)N3—C12—C13126.6 (5)
C7—N1—Cu1127.3 (4)N3—C12—H12A116.7
C8—N1—Cu1111.7 (3)C13—C12—H12A116.7
C10—N2—C9114.8 (4)C14—C13—C18120.1 (6)
C10—N2—Cu1113.1 (3)C14—C13—C12117.0 (6)
C9—N2—Cu1105.7 (3)C18—C13—C12122.8 (5)
C10—N2—H2B107.7C15—C14—C13121.2 (7)
C9—N2—H2B107.7C15—C14—H14A119.4
Cu1—N2—H2B107.7C13—C14—H14A119.4
C12—N3—C11i116.1 (5)C14—C15—C16119.4 (6)
C12—N3—Cu1123.7 (4)C14—C15—H15A120.3
C11i—N3—Cu1119.6 (4)C16—C15—H15A120.3
O1—C1—C2119.9 (6)C15—C16—C17121.8 (7)
O1—C1—C6123.4 (5)C15—C16—H16A119.1
C2—C1—C6116.7 (6)C17—C16—H16A119.1
C3—C2—C1121.9 (7)C16—C17—C18121.2 (7)
C3—C2—H2A119.0C16—C17—H17A119.4
C1—C2—H2A119.0C18—C17—H17A119.4
C4—C3—C2121.6 (7)O2—C18—C17119.7 (6)
C4—C3—H3A119.2O2—C18—C13124.0 (6)
C2—C3—H3A119.2C17—C18—C13116.2 (6)
C3—C4—C5118.6 (6)O3A—S1A—C20A104.8 (10)
C3—C4—H4A120.7O3A—S1A—C19A111.1 (14)
C5—C4—H4A120.7C20A—S1A—C19A99.2 (14)
C4—C5—C6121.6 (7)O3B—S1B—C20B113 (2)
C4—C5—H5A119.2O3B—S1B—C19B103 (3)
C6—C5—H5A119.2C20B—S1B—C19B94 (3)
C5—C6—C1119.5 (6)S1B—C19B—H19D109.5
C5—C6—C7116.8 (6)S1B—C19B—H19E109.5
C1—C6—C7123.5 (5)H19D—C19B—H19E109.5
N1—C7—C6125.0 (5)S1B—C19B—H19F109.5
N1—C7—H7A117.5H19D—C19B—H19F109.5
C6—C7—H7A117.5H19E—C19B—H19F109.5
N1—C8—C9106.1 (5)S1B—C20B—H20D109.5
N1—C8—H8A110.5S1B—C20B—H20E109.5
C9—C8—H8A110.5H20D—C20B—H20E109.5
N1—C8—H8B110.5S1B—C20B—H20F109.5
C9—C8—H8B110.5H20D—C20B—H20F109.5
H8A—C8—H8B108.7H20E—C20B—H20F109.5
N2—C9—C8110.6 (5)
N1—Cu1—O1—C1−11.8 (5)C6—C1—C2—C3−0.4 (10)
N3—Cu1—O1—C1171.8 (5)C1—C2—C3—C40.2 (12)
O2—Cu1—O1—C181.5 (6)C2—C3—C4—C50.6 (12)
N2—Cu1—O1—C1−86.8 (6)C3—C4—C5—C6−1.2 (11)
Cu1i—Cu1—O1—C1−138.1 (5)C4—C5—C6—C11.1 (10)
O1—Cu1—O2—C1863.5 (5)C4—C5—C6—C7177.3 (6)
N1—Cu1—O2—C18156.7 (5)O1—C1—C6—C5178.3 (6)
N3—Cu1—O2—C18−26.1 (5)C2—C1—C6—C5−0.3 (9)
N2—Cu1—O2—C18−125.3 (4)O1—C1—C6—C72.4 (9)
Cu1i—Cu1—O2—C18−82.6 (4)C2—C1—C6—C7−176.2 (6)
O1—Cu1—N1—C76.9 (5)C8—N1—C7—C6174.0 (5)
O2—Cu1—N1—C7−130.3 (5)Cu1—N1—C7—C60.6 (9)
N2—Cu1—N1—C7139.0 (5)C5—C6—C7—N1176.5 (6)
Cu1i—Cu1—N1—C7132.3 (5)C1—C6—C7—N1−7.4 (9)
O1—Cu1—N1—C8−167.0 (4)C7—N1—C8—C9−116.1 (6)
O2—Cu1—N1—C855.8 (4)Cu1—N1—C8—C958.2 (5)
N2—Cu1—N1—C8−34.9 (4)C10—N2—C9—C8−102.8 (6)
Cu1i—Cu1—N1—C8−41.6 (4)Cu1—N2—C9—C822.5 (5)
O1—Cu1—N2—C10−146.8 (3)N1—C8—C9—N2−50.9 (6)
N1—Cu1—N2—C10132.3 (4)C9—N2—C10—C11−75.2 (6)
N3—Cu1—N2—C10−50.0 (4)Cu1—N2—C10—C11163.4 (4)
O2—Cu1—N2—C1041.1 (4)N2—C10—C11—N3i−63.2 (6)
Cu1i—Cu1—N2—C10−56.2 (3)C11i—N3—C12—C13177.1 (5)
O1—Cu1—N2—C986.8 (4)Cu1—N3—C12—C13−12.0 (8)
N1—Cu1—N2—C96.0 (4)N3—C12—C13—C14178.2 (5)
N3—Cu1—N2—C9−176.4 (3)N3—C12—C13—C18−5.2 (9)
O2—Cu1—N2—C9−85.3 (4)C18—C13—C14—C150.2 (9)
Cu1i—Cu1—N2—C9177.5 (4)C12—C13—C14—C15176.9 (6)
O1—Cu1—N3—C12−114.8 (5)C13—C14—C15—C16−0.6 (10)
O2—Cu1—N3—C1222.3 (5)C14—C15—C16—C17−1.4 (11)
N2—Cu1—N3—C12113.4 (4)C15—C16—C17—C183.8 (10)
Cu1i—Cu1—N3—C12118.4 (5)Cu1—O2—C18—C17−165.4 (4)
O1—Cu1—N3—C11i55.8 (4)Cu1—O2—C18—C1318.2 (8)
O2—Cu1—N3—C11i−167.0 (4)C16—C17—C18—O2179.4 (6)
N2—Cu1—N3—C11i−75.9 (4)C16—C17—C18—C13−3.9 (9)
Cu1i—Cu1—N3—C11i−71.0 (4)C14—C13—C18—O2178.5 (5)
Cu1—O1—C1—C2−172.4 (5)C12—C13—C18—O22.0 (8)
Cu1—O1—C1—C69.1 (9)C14—C13—C18—C172.0 (8)
O1—C1—C2—C3−179.0 (6)C12—C13—C18—C17−174.6 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2079).

References

  • Gutiérrez, R., Vázquez, J., Vázquez, R. A., Reyes, Y., Toscano, R. A., Martinez, M. & Álvarez, C. (2001). J. Coord. Chem.54, 313–321.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • McKenzie, E. D. & Selvey, S. J. (1985). Inorg. Chim. Acta, 101, 127–133.
  • Reyes-Ortega, Y., Alcántara-Flores, J. L., Hernández-Galindo, M. C., Ramírez-Rosales, D., Bernès, S., Ramírez-García, J. C., Zamorano-Ulloa, R. & Escudero, R. (2005). J. Am. Chem. Soc.127, 16312–16317. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography