PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o782.
Published online 2008 April 2. doi:  10.1107/S160053680800799X
PMCID: PMC2961309

Diethyl 2-[(1-methyl-1H-pyrrol-2-yl)methyl­ene­amino]-5-(2-thienylmethyl­ene­amino)thio­phene-3,4-dicarboxyl­ate

Abstract

Both imine bonds of the title compound, C21H21N3O4S2, were found to be in the E configuration. The terminal pyrrole and thio­phene rings are twisted by 2.5 (3) and 2.3 (2)°, respectively, from the mean plane of the central thio­phene to which they are attached. The structure is disordered by exchange of the terminal heterocyclic rings; the site occupancy factors are ca 0.8 and 0.2. The crystal packing involves some π–π stacking [3.449 (4) Å between pyrrole and terminal thio­phene rings].

Related literature

For general background, see: Dufresne et al. (2007 [triangle]). For a similar compound, see: Dufresne et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o782-scheme1.jpg

Experimental

Crystal data

  • C21H21N3O4S2
  • M r = 443.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o782-efi4.jpg
  • a = 30.7355 (14) Å
  • b = 6.9617 (4) Å
  • c = 19.5163 (9) Å
  • β = 92.732 (2)°
  • V = 4171.2 (4) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 2.60 mm−1
  • T = 150 (2) K
  • 0.14 × 0.09 × 0.05 mm

Data collection

  • Bruker SMART 6K diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.712, T max = 0.881
  • 24275 measured reflections
  • 4076 independent reflections
  • 3330 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.115
  • S = 1.03
  • 4076 reflections
  • 394 parameters
  • 544 restraints
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: UdMX (Marris, 2004 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S160053680800799X/fl2192sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800799X/fl2192Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council Canada, the Centre for Self-Assembled Chemical Structures, and Canada Foundation for Innovation. SD thanks the Université de Montréal for a graduate scholarship.

supplementary crystallographic information

Comment

The title comound (I), seen in Fig. 1, was synthesized during the course of our ongoing research relating to conjugated imines (Dufresne et al., 2007). Despite the terminal heterounits of (I) being disordered by 18%, both imines were found to adopt the E isomer. Neither solvent nor counter-ions were found in the closed-packed stacking (Fig. 2).

A major point of interest is the imine bonds, 1.446 (9), 1.278 (2) and 1.377 (2)Å for C4—C5, N1—C5 and N1—C6, respectively. Similarly, the bond lengths for C10—C11, N2—C10 and N2—C9 are 1.423 (9), 1.299 (17) and 1.373 (2) Å. These distances are comparable to those fournd for an analogous all-thiophene compound, 1.441 (4), 1.272 (3) and 1.388 (3)Å (Dufresne et al., 2006).

The terminal heteroaryl groups are slightly twisted from the mean plane of the central thiophene to which they are connected with a dihedral angle of 2.3 (2)° for the terminal thiophene and 2.5 (3)° for the N-methylpyrrole. The small dihedral angles show that the aryl groups of compound (I) are nearly coplanar. This is in contrast to its all-thiophene analogue whose comparable mean plane angles are 9.04 (4)° and 25.07 (6)°.

The crystal packing of (I) is also different from that found for the all-thiophene analogue. The molecules in the all-thiophene network are linearly aligned in one direction. In contrast, the molecules of (I) are misaligned by up to 16.84 (4)°. No traditional H-bonding was found, but π-π-stacking does occur as shown in Figure 2. π-π-stacking interactions occur between the pyrrole and the terminal thiophene of two different molecules, which are separated by 3.449 (4) Å.

Experimental

In a 50 ml round bottom flask was added 1-methyl-2-pyrrole-carboxaldehyde (40 mg, 0.37 mmol) dissolved in 25 ml of anhydrous toluene to which was subsequently added 1,4-diazabicyclo[2.2.2]octane (159 mg, 1.42 mmol) and TiCl4 (0.28 ml, 0.28 mmol) as a 1.0 M solution in toluene at 0 °C followed by diethyl 2-((thiophen-2-yl)methyleneamino)-5-aminothiophene-3,4-dicarboxylate (100 mg, 0.28 mmol). The mixture was then refluxed for four hours followed by solvent removal. Purification by flash chromatography yielded the title product as a red solid (63 mg). The selected crystal was obtained by slow evaporation of a concentrated solution in acetone.

Refinement

During the refinement, it became apparent that the structure was disordered as an inversion of the terminal heterocycles. We first tried to fix each part to half of the weight and then let it vary to the optimized proportion of 82:18. The temperature factors were less than desired because of the disorder requiring many constraints including fixing similar temperature factors and distances for every disordered atom. H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and included in the refinement in the riding-model approximation, with Uĩso~(H) = 1.2 U~eq~(C).

Figures

Fig. 1.
ORTEP representation of (I) showing the disorder present in the terminal rings with the numbering scheme adopted (Farrugia, 1997). Ellipsoids drawn at 30% probability level.
Fig. 2.
Supramolecular structure showing the intermolecular π-stacking giving the structural arrangement. Dashed lines indicate the π-stacking. The H atoms and disorder was omitted for clarity. [Symmetry codes: (none) x, 1 - y, -1/2 + z; (i) 1/2 ...

Crystal data

C21H21N3O4S2F000 = 1856
Mr = 443.53Dx = 1.413 Mg m3
Monoclinic, C2/cCu Kα radiation λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 30.7355 (14) Åθ = 15.0–30.0º
b = 6.9617 (4) ŵ = 2.60 mm1
c = 19.5163 (9) ÅT = 150 (2) K
β = 92.732 (2)ºBlock, red
V = 4171.2 (4) Å30.14 × 0.09 × 0.05 mm
Z = 8

Data collection

Bruker SMART 6K diffractometer4076 independent reflections
Radiation source: Rotating Anode3330 reflections with I > 2σ(I)
Monochromator: Montel 200 opticsRint = 0.041
Detector resolution: 5.5 pixels mm-1θmax = 71.9º
T = 150(2) Kθmin = 2.9º
ω scansh = −37→36
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)k = −7→8
Tmin = 0.712, Tmax = 0.881l = −23→24
24275 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.115  w = 1/[σ2(Fo2) + (0.0781P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4076 reflectionsΔρmax = 0.28 e Å3
394 parametersΔρmin = −0.38 e Å3
544 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.10022 (4)1.12212 (19)0.84005 (7)0.0407 (3)
O20.10797 (4)0.80068 (19)0.84277 (7)0.0389 (3)
O30.17783 (4)1.0055 (2)0.75085 (6)0.0409 (3)
O40.25038 (4)1.00854 (18)0.76690 (6)0.0336 (3)
N10.12908 (5)0.9423 (2)0.99876 (7)0.0313 (3)
N20.28368 (5)1.0327 (2)0.90462 (7)0.0300 (3)
S20.219461 (14)0.98751 (6)0.99760 (2)0.03223 (14)
C60.16602 (6)0.9698 (2)0.96274 (9)0.0306 (4)
C70.16479 (6)0.9824 (2)0.89280 (9)0.0298 (4)
C80.20672 (6)1.0028 (2)0.86477 (9)0.0288 (4)
C90.24011 (6)1.0096 (2)0.91492 (8)0.0290 (4)
C160.12129 (6)0.9810 (3)0.85451 (9)0.0321 (4)
C170.06400 (6)0.7790 (3)0.81304 (11)0.0482 (5)
H17A0.06370.79960.76280.058*
H17B0.04440.87470.83300.058*
C180.04913 (8)0.5837 (4)0.82806 (14)0.0711 (8)
H18A0.06970.49020.81050.107*
H18B0.02020.56290.80600.107*
H18C0.04760.56770.87780.107*
C190.20984 (6)1.0069 (2)0.78909 (9)0.0302 (4)
C200.25276 (6)1.0069 (3)0.69247 (8)0.0351 (4)
H20A0.23851.12270.67240.042*
H20B0.23790.89180.67290.042*
C210.30039 (6)1.0039 (3)0.67686 (10)0.0399 (4)
H21A0.31481.11820.69650.060*
H21B0.30321.00320.62710.060*
H21C0.31410.88840.69680.060*
S10.04126 (2)0.87795 (11)1.05416 (4)0.0370 (3)0.824 (3)
C10.01520 (10)0.8382 (8)1.1284 (2)0.0404 (7)0.824 (3)
H1−0.01530.81931.13020.049*0.824 (3)
C20.04307 (17)0.8370 (10)1.1840 (3)0.0417 (10)0.824 (3)
H20.03420.81701.22940.050*0.824 (3)
C30.08692 (15)0.8685 (7)1.1675 (2)0.0352 (8)0.824 (3)
H30.11060.87411.20050.042*0.824 (3)
C40.09117 (17)0.8899 (18)1.0984 (3)0.0307 (6)0.824 (3)
C50.1310 (4)0.925 (5)1.0640 (5)0.0317 (7)0.824 (3)
H50.15810.93491.08940.038*0.824 (3)
C100.3117 (3)1.0332 (16)0.9566 (10)0.0321 (10)0.824 (3)
H100.30071.01011.00050.038*0.824 (3)
C110.3573 (2)1.065 (3)0.9540 (3)0.0333 (6)0.824 (3)
C120.38669 (14)1.0773 (7)1.01056 (16)0.0390 (7)0.824 (3)
H120.37981.06621.05730.047*0.824 (3)
C130.42795 (12)1.1086 (7)0.98639 (14)0.0409 (7)0.824 (3)
H130.45451.12071.01300.049*0.824 (3)
C140.42238 (10)1.1186 (6)0.91597 (15)0.0400 (7)0.824 (3)
H140.44511.14070.88550.048*0.824 (3)
N30.38014 (10)1.0927 (4)0.89645 (15)0.0357 (6)0.824 (3)
C150.36240 (9)1.0926 (4)0.82465 (15)0.0449 (6)0.824 (3)
H15A0.34791.21550.81460.067*0.824 (3)
H15B0.34140.98770.81820.067*0.824 (3)
H15C0.38621.07470.79360.067*0.824 (3)
S1'0.37454 (15)1.1247 (7)0.8684 (3)0.0464 (14)0.176 (3)
C1'0.4267 (4)1.143 (3)0.8980 (8)0.0400 (9)0.176 (3)
H1'0.45071.17080.87070.048*0.176 (3)
C2'0.4294 (6)1.113 (4)0.9662 (8)0.0407 (9)0.176 (3)
H2'0.45591.12630.99270.049*0.176 (3)
C3'0.3897 (7)1.060 (4)0.9958 (8)0.0390 (9)0.176 (3)
H3'0.38741.02191.04210.047*0.176 (3)
C4'0.3551 (9)1.072 (16)0.9488 (14)0.0333 (8)0.176 (3)
C5'0.128 (2)0.92 (2)1.064 (2)0.0318 (9)0.176 (3)
H5'0.15600.92121.08730.038*0.176 (3)
C10'0.3104 (14)1.053 (8)0.957 (5)0.0321 (11)0.176 (3)
H10'0.29951.05421.00140.039*0.176 (3)
C11'0.0926 (8)0.881 (9)1.1072 (13)0.0307 (8)0.176 (3)
C12'0.0912 (8)0.835 (4)1.1755 (12)0.0351 (9)0.176 (3)
H12'0.11550.82341.20730.042*0.176 (3)
C13'0.0477 (9)0.809 (5)1.1897 (12)0.0416 (11)0.176 (3)
H13'0.03620.78841.23340.050*0.176 (3)
C14'0.0245 (6)0.819 (4)1.1278 (10)0.0406 (9)0.176 (3)
H14'−0.00610.80351.12120.049*0.176 (3)
N3'0.0527 (4)0.8565 (19)1.0768 (6)0.041 (3)0.176 (3)
C15'0.0380 (4)0.8571 (17)1.0042 (6)0.040 (3)0.176 (3)
H15D0.00840.80520.99940.059*0.176 (3)
H15E0.05760.77760.97800.059*0.176 (3)
H15F0.03820.98900.98670.059*0.176 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0392 (7)0.0416 (8)0.0411 (7)0.0086 (6)0.0006 (6)0.0000 (6)
O20.0287 (7)0.0390 (7)0.0488 (8)−0.0035 (5)−0.0020 (6)−0.0017 (6)
O30.0338 (7)0.0578 (9)0.0313 (7)−0.0018 (6)0.0021 (6)−0.0045 (6)
O40.0316 (7)0.0439 (7)0.0256 (6)−0.0015 (5)0.0058 (5)−0.0011 (5)
N10.0290 (8)0.0329 (8)0.0327 (8)−0.0002 (6)0.0090 (6)−0.0012 (6)
N20.0288 (8)0.0312 (8)0.0302 (7)−0.0012 (6)0.0042 (6)−0.0008 (6)
S20.0290 (2)0.0407 (3)0.0274 (2)0.00037 (17)0.00565 (17)−0.00015 (17)
C60.0293 (9)0.0304 (9)0.0325 (9)−0.0006 (7)0.0052 (7)−0.0023 (7)
C70.0303 (9)0.0280 (9)0.0316 (9)0.0006 (7)0.0049 (7)−0.0006 (7)
C80.0294 (9)0.0282 (9)0.0292 (8)0.0003 (6)0.0057 (7)−0.0026 (7)
C90.0301 (9)0.0293 (9)0.0280 (8)0.0010 (6)0.0061 (7)−0.0011 (7)
C160.0298 (9)0.0381 (10)0.0289 (8)−0.0020 (7)0.0080 (7)−0.0026 (7)
C170.0331 (10)0.0482 (12)0.0622 (13)−0.0047 (9)−0.0093 (9)0.0014 (10)
C180.0580 (16)0.0732 (18)0.0798 (18)−0.0287 (13)−0.0214 (14)0.0224 (14)
C190.0299 (9)0.0297 (9)0.0315 (9)−0.0018 (7)0.0046 (7)−0.0013 (7)
C200.0407 (11)0.0407 (10)0.0243 (9)−0.0030 (8)0.0068 (7)−0.0017 (7)
C210.0411 (11)0.0450 (11)0.0346 (10)−0.0044 (8)0.0112 (8)−0.0025 (8)
S10.0284 (4)0.0440 (4)0.0388 (6)−0.0025 (3)0.0032 (3)−0.0030 (3)
C10.0288 (16)0.0424 (16)0.0513 (11)−0.0017 (15)0.0147 (12)−0.0097 (10)
C20.0397 (15)0.046 (2)0.0412 (13)−0.0025 (14)0.0167 (11)−0.0029 (12)
C30.0323 (14)0.039 (2)0.0350 (15)0.0005 (12)0.0062 (10)0.0008 (12)
C40.0291 (10)0.0334 (15)0.0299 (16)−0.0004 (9)0.0041 (10)−0.0020 (18)
C50.027 (2)0.0327 (10)0.0354 (9)0.000 (2)0.0052 (10)−0.0023 (7)
C100.0342 (11)0.031 (3)0.0311 (9)0.0010 (13)0.0056 (9)0.001 (2)
C110.0328 (11)0.0312 (11)0.0360 (14)0.0008 (12)0.0025 (9)0.000 (2)
C120.0371 (12)0.0433 (15)0.0364 (16)0.0017 (10)0.0007 (12)−0.0064 (14)
C130.0331 (11)0.0445 (12)0.0444 (17)−0.0007 (9)−0.0045 (14)−0.0032 (17)
C140.0296 (11)0.0443 (15)0.0469 (19)−0.0015 (9)0.0115 (11)0.0047 (13)
N30.0340 (12)0.0396 (14)0.0336 (14)0.0007 (9)0.0031 (12)0.0051 (11)
C150.0393 (14)0.0672 (18)0.0285 (14)0.0014 (12)0.0060 (11)0.0073 (12)
S1'0.036 (2)0.054 (2)0.051 (3)−0.0032 (14)0.011 (2)0.002 (2)
C1'0.0299 (14)0.0443 (17)0.047 (2)−0.0016 (13)0.0112 (14)0.0045 (16)
C2'0.0328 (13)0.0445 (14)0.044 (2)−0.0007 (12)−0.0038 (17)−0.003 (2)
C3'0.0372 (15)0.0431 (17)0.0367 (18)0.0018 (13)0.0010 (15)−0.0061 (17)
C4'0.0328 (13)0.0312 (13)0.0358 (16)0.0009 (15)0.0020 (12)−0.001 (2)
C5'0.028 (2)0.0327 (13)0.0353 (12)0.000 (2)0.0048 (13)−0.0023 (11)
C10'0.0341 (13)0.031 (3)0.0312 (12)0.0011 (15)0.0055 (12)0.000 (2)
C11'0.0288 (12)0.0333 (17)0.0303 (18)−0.0003 (12)0.0040 (13)−0.002 (2)
C12'0.0324 (16)0.039 (2)0.0349 (17)0.0005 (15)0.0064 (13)0.0009 (15)
C13'0.0397 (17)0.045 (3)0.0411 (15)−0.0021 (16)0.0160 (14)−0.0028 (14)
C14'0.0293 (19)0.0423 (18)0.0512 (14)−0.0018 (17)0.0142 (15)−0.0094 (13)
N3'0.041 (4)0.041 (4)0.040 (4)0.001 (3)−0.003 (3)0.007 (3)
C15'0.040 (5)0.047 (6)0.032 (6)−0.005 (4)−0.006 (4)0.001 (4)

Geometric parameters (Å, °)

O1—C161.203 (2)C5—H50.9500
O2—C161.337 (2)C10—C111.423 (9)
O2—C171.453 (2)C10—H100.9500
O3—C191.206 (2)C11—N31.366 (5)
O4—C191.339 (2)C11—C121.395 (5)
O4—C201.4578 (19)C12—C131.391 (4)
N1—C51.278 (9)C12—H120.9500
N1—C5'1.28 (4)C13—C141.379 (4)
N1—C61.377 (2)C13—H130.9500
N2—C10'1.28 (8)C14—N31.347 (4)
N2—C101.299 (17)C14—H140.9500
N2—C91.373 (2)N3—C151.479 (3)
S2—C61.7519 (18)C15—H15A0.9800
S2—C91.7685 (16)C15—H15B0.9800
C6—C71.367 (2)C15—H15C0.9800
C7—C81.431 (2)S1'—C1'1.683 (14)
C7—C161.500 (2)S1'—C4'1.744 (16)
C8—C91.385 (2)C1'—C2'1.345 (14)
C8—C191.485 (2)C1'—H1'0.9500
C17—C181.468 (3)C2'—C3'1.422 (15)
C17—H17A0.9900C2'—H2'0.9500
C17—H17B0.9900C3'—C4'1.374 (17)
C18—H18A0.9800C3'—H3'0.9500
C18—H18B0.9800C4'—C10'1.40 (4)
C18—H18C0.9800C5'—C11'1.44 (4)
C20—C211.509 (3)C5'—H5'0.9500
C20—H20A0.9900C10'—H10'0.9500
C20—H20B0.9900C11'—N3'1.348 (17)
C21—H21A0.9800C11'—C12'1.374 (18)
C21—H21B0.9800C12'—C13'1.391 (18)
C21—H21C0.9800C12'—H12'0.9500
S1—C11.711 (4)C13'—C14'1.375 (18)
S1—C41.726 (4)C13'—H13'0.9500
C1—C21.350 (5)C14'—N3'1.375 (16)
C1—H10.9500C14'—H14'0.9500
C2—C31.418 (4)N3'—C15'1.467 (12)
C2—H20.9500C15'—H15D0.9800
C3—C41.368 (5)C15'—H15E0.9800
C3—H30.9500C15'—H15F0.9800
C4—C51.446 (9)
C16—O2—C17115.94 (15)N1—C5—C4118.5 (10)
C19—O4—C20114.46 (14)N1—C5—H5120.7
C5—N1—C6121.4 (5)C4—C5—H5120.7
C5'—N1—C6126 (3)N2—C10—C11126.2 (13)
C10'—N2—C9119 (3)N2—C10—H10116.9
C10—N2—C9120.1 (6)C11—C10—H10116.9
C6—S2—C991.28 (8)N3—C11—C12107.7 (4)
C7—C6—N1122.32 (17)N3—C11—C10126.6 (9)
C7—C6—S2111.36 (13)C12—C11—C10125.7 (9)
N1—C6—S2126.31 (13)C13—C12—C11107.9 (3)
C6—C7—C8113.93 (16)C13—C12—H12126.0
C6—C7—C16118.61 (16)C11—C12—H12126.1
C8—C7—C16127.42 (15)C14—C13—C12105.9 (3)
C9—C8—C7112.57 (15)C14—C13—H13127.0
C9—C8—C19128.43 (16)C12—C13—H13127.1
C7—C8—C19118.96 (16)N3—C14—C13110.3 (3)
N2—C9—C8126.55 (15)N3—C14—H14124.8
N2—C9—S2122.60 (13)C13—C14—H14124.8
C8—C9—S2110.85 (13)C14—N3—C11108.2 (3)
O1—C16—O2124.72 (17)C14—N3—C15125.1 (3)
O1—C16—C7124.68 (17)C11—N3—C15126.8 (3)
O2—C16—C7110.46 (15)C1'—S1'—C4'94.0 (9)
O2—C17—C18108.00 (17)C2'—C1'—S1'109.9 (11)
O2—C17—H17A110.1C2'—C1'—H1'125.0
C18—C17—H17A110.1S1'—C1'—H1'125.1
O2—C17—H17B110.1C1'—C2'—C3'115.3 (14)
C18—C17—H17B110.1C1'—C2'—H2'122.3
H17A—C17—H17B108.4C3'—C2'—H2'122.3
C17—C18—H18A109.5C4'—C3'—C2'111.5 (15)
C17—C18—H18B109.5C4'—C3'—H3'124.3
H18A—C18—H18B109.5C2'—C3'—H3'124.2
C17—C18—H18C109.5C3'—C4'—C10'131 (4)
H18A—C18—H18C109.5C3'—C4'—S1'108.9 (14)
H18B—C18—H18C109.5C10'—C4'—S1'120 (4)
O3—C19—O4122.97 (16)N1—C5'—C11'131 (5)
O3—C19—C8121.73 (16)N1—C5'—H5'114.2
O4—C19—C8115.29 (15)C11'—C5'—H5'114.3
O4—C20—C21107.25 (15)N2—C10'—C4'121 (7)
O4—C20—H20A110.3N2—C10'—H10'119.7
C21—C20—H20A110.3C4'—C10'—H10'119.9
O4—C20—H20B110.3N3'—C11'—C12'109.1 (17)
C21—C20—H20B110.3N3'—C11'—C5'118 (3)
H20A—C20—H20B108.5C12'—C11'—C5'132 (3)
C20—C21—H21A109.5C11'—C12'—C13'107.3 (16)
C20—C21—H21B109.5C11'—C12'—H12'126.4
H21A—C21—H21B109.5C13'—C12'—H12'126.3
C20—C21—H21C109.5C14'—C13'—C12'106.5 (16)
H21A—C21—H21C109.5C14'—C13'—H13'126.8
H21B—C21—H21C109.5C12'—C13'—H13'126.8
C1—S1—C491.4 (2)N3'—C14'—C13'109.0 (15)
C2—C1—S1112.1 (3)N3'—C14'—H14'125.5
C2—C1—H1123.9C13'—C14'—H14'125.5
S1—C1—H1123.9C11'—N3'—C14'107.4 (14)
C1—C2—C3113.0 (4)C11'—N3'—C15'131.1 (14)
C1—C2—H2123.5C14'—N3'—C15'121.5 (13)
C3—C2—H2123.5N3'—C15'—H15D109.5
C4—C3—C2112.2 (4)N3'—C15'—H15E109.5
C4—C3—H3123.9H15D—C15'—H15E109.5
C2—C3—H3123.9N3'—C15'—H15F109.5
C3—C4—C5126.8 (6)H15D—C15'—H15F109.5
C3—C4—S1111.3 (3)H15E—C15'—H15F109.5
C5—C4—S1121.9 (6)
C5—N1—C6—C7177.8 (17)C1—S1—C4—C3−1.4 (8)
C5'—N1—C6—C7175 (9)C1—S1—C4—C5−179.5 (18)
C5—N1—C6—S2−0.6 (17)C5'—N1—C5—C4−27 (91)
C5'—N1—C6—S2−3(9)C6—N1—C5—C4−177.9 (15)
C9—S2—C6—C7−0.63 (13)C3—C4—C5—N1−179.7 (16)
C9—S2—C6—N1177.95 (16)S1—C4—C5—N1−2(3)
N1—C6—C7—C8−177.47 (15)C9—N2—C10—C11−176.7 (13)
S2—C6—C7—C81.18 (19)N2—C10—C11—N3−3(3)
N1—C6—C7—C164.7 (2)N2—C10—C11—C12175.7 (13)
S2—C6—C7—C16−176.64 (12)N3—C11—C12—C13−1.3 (17)
C6—C7—C8—C9−1.3 (2)C10—C11—C12—C13179.8 (16)
C16—C7—C8—C9176.33 (16)C11—C12—C13—C141.2 (11)
C6—C7—C8—C19176.62 (15)C12—C13—C14—N3−0.7 (5)
C16—C7—C8—C19−5.8 (3)C13—C14—N3—C11−0.1 (11)
C10'—N2—C9—C8174 (3)C13—C14—N3—C15−179.4 (3)
C10—N2—C9—C8−178.8 (6)C12—C11—N3—C140.8 (16)
C10'—N2—C9—S2−5(3)C10—C11—N3—C14179.7 (17)
C10—N2—C9—S22.1 (6)C12—C11—N3—C15−179.8 (7)
C7—C8—C9—N2−178.42 (16)C10—C11—N3—C15−1(3)
C19—C8—C9—N24.0 (3)C4'—S1'—C1'—C2'−1(4)
C7—C8—C9—S20.73 (19)S1'—C1'—C2'—C3'4(3)
C19—C8—C9—S2−176.89 (14)C1'—C2'—C3'—C4'−7(6)
C6—S2—C9—N2179.12 (15)C2'—C3'—C4'—C10'−173 (9)
C6—S2—C9—C8−0.07 (13)C2'—C3'—C4'—S1'6(8)
C17—O2—C16—O1−2.7 (3)C1'—S1'—C4'—C3'−3(7)
C17—O2—C16—C7173.15 (15)C1'—S1'—C4'—C10'176 (8)
C6—C7—C16—O190.3 (2)C5—N1—C5'—C11'151 (100)
C8—C7—C16—O1−87.2 (2)C6—N1—C5'—C11'−178 (10)
C6—C7—C16—O2−85.62 (19)C9—N2—C10'—C4'178 (6)
C8—C7—C16—O296.9 (2)C3'—C4'—C10'—N2−167 (8)
C16—O2—C17—C18−158.52 (19)S1'—C4'—C10'—N215 (11)
C20—O4—C19—O3−0.5 (2)N1—C5'—C11'—N3'5(19)
C20—O4—C19—C8178.27 (14)N1—C5'—C11'—C12'173 (10)
C9—C8—C19—O3−177.86 (18)N3'—C11'—C12'—C13'−9(5)
C7—C8—C19—O34.7 (2)C5'—C11'—C12'—C13'−177 (10)
C9—C8—C19—O43.4 (2)C11'—C12'—C13'—C14'6(4)
C7—C8—C19—O4−174.11 (15)C12'—C13'—C14'—N3'−2(4)
C19—O4—C20—C21−178.59 (14)C12'—C11'—N3'—C14'8(5)
C4—S1—C1—C20.8 (6)C5'—C11'—N3'—C14'178 (8)
S1—C1—C2—C30.0 (7)C12'—C11'—N3'—C15'−170 (2)
C1—C2—C3—C4−1.0 (9)C5'—C11'—N3'—C15'1(10)
C2—C3—C4—C5179.6 (19)C13'—C14'—N3'—C11'−4(4)
C2—C3—C4—S11.6 (10)C13'—C14'—N3'—C15'174 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2192).

References

  • Bruker (2003). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602–o5604.
  • Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem.17, 1166–1177.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Marris, T. (2004). UdMX Université de Montréal, Montréal, Québec, Canada.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography