PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o794.
Published online 2008 April 2. doi:  10.1107/S1600536808008477
PMCID: PMC2961306

2,5,7-Trimethyl-3-phenyl­sulfonyl-1-benzofuran

Abstract

The title compound, C17H16O3S, was prepared by the oxidation of 2,5,7-trimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring exhibits a dihedral angle of 81.16 (4)° with the plane of the benzofuran fragment. The crystal structure is stabilized by π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.874 (2) Å] and by C—H(...)π inter­actions between a phenyl H atom of the phenyl­sulfonyl substituent and the furan ring of adjacent mol­ecules. In addition, the crystal structure exhibits intra- and inter­molecular C—H(...)O inter­actions.

Related literature

For the crystal structures of similar substituted benzofuran compounds, see: Choi et al. (2007a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o794-scheme1.jpg

Experimental

Crystal data

  • C17H16O3S
  • M r = 300.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o794-efi1.jpg
  • a = 9.2468 (7) Å
  • b = 8.4238 (7) Å
  • c = 18.963 (2) Å
  • β = 91.535 (2)°
  • V = 1476.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 173 (2) K
  • 0.40 × 0.40 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 8704 measured reflections
  • 3212 independent reflections
  • 2544 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.104
  • S = 1.03
  • 3212 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008477/zl2106sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008477/zl2106Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related to earlier communications on the synthesis and structure of substituted benzofuran analogues, viz. 2,5-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2,5-dimethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007b). Herein we report the molecular and crystal structure of the title compound, 2,5,7-trimethyl-3-phenylsulfonyl-1-benzofuran (Fig. 1).

The benzofuran unit is almost planar, with a mean deviation of 0.009 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran ring system [81.16 (4) °] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by aromatic π—π stacking interactions between the furan and the benzene rings from neighbouring molecules. The Cg1···Cg2ii distance is 3.874 (2)Å (Cg1 and Cg2 are the centroids of the O1/C8/C1/C2/C7 furan ring and the C2—C7 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions between a phenyl H atom of the phenylsulfonyl substituent and the furan ring of the benzofuran unit, with a C12—H12···Cgi separation of 2.81 Å (Fig. 2 and Table 1; Cg1 is the centroid of the O1/C8/C1/C2/C7 furan ring, symmetry code as in Fig. 2). Additionally, intra- and intermolecular C—H···O interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

3-Chloroperoxybenzoic acid (77%, 471 mg, 2.1 mmol) was added in small portions to a stirred solution of 2,5,7-trimethyl-3-phenylsulfanyl-1-benzofuran (268 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 399–400 K; Rf = 0.61 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.41 (s, 6H), 2.80 (s, 3H), 6.92 (s, 1H), 7.47–7.52 (m, 4H), 8.01 (d, J = 7.68 Hz, 2H); EI—MS 300 [M+].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.99 Å for methylene H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, Uiso(H) =1.5Ueq(C) for H atoms for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoides drawn at the 50% probability level.
Fig. 2.
π—π, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x + 1, -y + 2, -z; (ii) -x + ...

Crystal data

C17H16O3SF000 = 632
Mr = 300.36Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 4291 reflections
a = 9.2468 (7) Åθ = 2.5–28.3º
b = 8.4238 (7) ŵ = 0.23 mm1
c = 18.963 (2) ÅT = 173 (2) K
β = 91.535 (2)ºBlock, colorless
V = 1476.6 (2) Å30.40 × 0.40 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3212 independent reflections
Radiation source: fine-focus sealed tube2544 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
Detector resolution: 10.0 pixels mm-1θmax = 27.0º
T = 173(2) Kθmin = 2.5º
[var phi] and ω scansh = −11→11
Absorption correction: nonek = −7→10
8704 measured reflectionsl = −24→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.104  w = 1/[σ2(Fo2) + (0.0467P)2 + 0.6422P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3212 reflectionsΔρmax = 0.30 e Å3
193 parametersΔρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.71396 (5)0.59940 (5)0.11202 (2)0.02746 (13)
O11.04792 (13)0.77976 (15)0.01610 (7)0.0331 (3)
O20.77401 (15)0.57958 (16)0.18201 (6)0.0386 (3)
O30.63915 (14)0.46890 (14)0.07823 (7)0.0346 (3)
C10.84920 (18)0.6601 (2)0.05599 (9)0.0270 (4)
C20.84265 (18)0.6499 (2)−0.02041 (9)0.0260 (4)
C30.74772 (19)0.5861 (2)−0.07118 (9)0.0290 (4)
H30.66250.5321−0.05790.035*
C40.7809 (2)0.6035 (2)−0.14184 (9)0.0330 (4)
C50.9071 (2)0.6844 (2)−0.16049 (10)0.0346 (4)
H50.92660.6957−0.20920.042*
C61.00483 (19)0.7488 (2)−0.11156 (10)0.0328 (4)
C70.96763 (19)0.7270 (2)−0.04190 (9)0.0291 (4)
C80.97377 (19)0.7376 (2)0.07465 (9)0.0304 (4)
C90.59363 (18)0.7624 (2)0.11293 (9)0.0263 (4)
C100.48964 (19)0.7768 (2)0.05910 (9)0.0318 (4)
H100.48300.70050.02230.038*
C110.3956 (2)0.9051 (2)0.06032 (11)0.0402 (5)
H110.32320.91650.02420.048*
C120.4063 (2)1.0159 (2)0.11345 (12)0.0450 (5)
H120.34161.10350.11370.054*
C130.5111 (2)1.0004 (2)0.16670 (11)0.0428 (5)
H130.51801.07760.20320.051*
C140.6058 (2)0.8729 (2)0.16692 (10)0.0329 (4)
H140.67770.86150.20330.040*
C150.6791 (2)0.5378 (3)−0.19827 (10)0.0461 (5)
H15A0.64970.4301−0.18530.069*
H15B0.72820.5348−0.24340.069*
H15C0.59340.6058−0.20270.069*
C161.1407 (2)0.8345 (2)−0.13129 (12)0.0438 (5)
H16A1.14860.9339−0.10460.066*
H16B1.13700.8581−0.18190.066*
H16C1.22490.7675−0.12020.066*
C171.0431 (2)0.7849 (2)0.14286 (10)0.0398 (5)
H17A0.97870.75860.18140.060*
H17B1.06140.89940.14270.060*
H17C1.13480.72780.14950.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0317 (2)0.0259 (2)0.0248 (2)0.00101 (17)0.00055 (16)0.00232 (17)
O10.0278 (6)0.0313 (7)0.0401 (7)−0.0011 (5)0.0010 (5)−0.0019 (6)
O20.0440 (8)0.0429 (8)0.0287 (7)0.0047 (6)−0.0027 (6)0.0058 (6)
O30.0403 (7)0.0252 (6)0.0383 (7)−0.0040 (5)0.0022 (6)−0.0008 (5)
C10.0264 (8)0.0274 (9)0.0273 (8)0.0029 (7)−0.0003 (6)−0.0001 (7)
C20.0276 (8)0.0229 (8)0.0276 (8)0.0051 (7)0.0019 (6)0.0015 (7)
C30.0301 (9)0.0280 (9)0.0289 (9)0.0026 (7)0.0005 (7)0.0000 (7)
C40.0383 (10)0.0317 (9)0.0289 (9)0.0091 (8)−0.0003 (7)0.0010 (8)
C50.0430 (10)0.0332 (10)0.0281 (9)0.0124 (8)0.0082 (8)0.0045 (8)
C60.0334 (10)0.0260 (9)0.0395 (10)0.0081 (7)0.0098 (8)0.0050 (8)
C70.0287 (8)0.0238 (8)0.0348 (9)0.0043 (7)0.0007 (7)−0.0003 (7)
C80.0294 (9)0.0274 (9)0.0343 (9)0.0047 (7)−0.0008 (7)−0.0013 (7)
C90.0253 (8)0.0252 (8)0.0286 (8)−0.0030 (7)0.0045 (7)0.0023 (7)
C100.0320 (9)0.0308 (9)0.0324 (9)−0.0035 (7)0.0006 (7)0.0012 (8)
C110.0303 (10)0.0424 (11)0.0480 (12)0.0021 (8)0.0011 (8)0.0113 (9)
C120.0404 (11)0.0350 (11)0.0605 (13)0.0097 (9)0.0177 (10)0.0049 (10)
C130.0488 (12)0.0338 (10)0.0465 (12)0.0003 (9)0.0147 (9)−0.0076 (9)
C140.0339 (9)0.0345 (10)0.0307 (9)−0.0040 (8)0.0066 (7)−0.0033 (8)
C150.0492 (12)0.0601 (14)0.0285 (10)0.0059 (11)−0.0055 (8)−0.0026 (9)
C160.0401 (11)0.0361 (11)0.0561 (13)0.0031 (9)0.0161 (10)0.0097 (9)
C170.0359 (10)0.0416 (11)0.0413 (11)0.0006 (9)−0.0096 (8)−0.0055 (9)

Geometric parameters (Å, °)

S—O21.4346 (13)C9—C101.389 (2)
S—O31.4401 (13)C10—C111.388 (3)
S—C11.7394 (17)C10—H100.9500
S—C91.7674 (17)C11—C121.375 (3)
O1—C81.367 (2)C11—H110.9500
O1—C71.384 (2)C12—C131.387 (3)
C1—C81.363 (2)C12—H120.9500
C1—C21.451 (2)C13—C141.386 (3)
C2—C31.393 (2)C13—H130.9500
C2—C71.396 (2)C14—H140.9500
C3—C41.390 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.405 (3)C15—H15C0.9800
C4—C151.511 (3)C16—H16A0.9800
C5—C61.388 (3)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—C71.386 (2)C17—H17A0.9800
C6—C161.505 (3)C17—H17B0.9800
C8—C171.483 (2)C17—H17C0.9800
C9—C141.386 (2)
O2—S—O3119.48 (8)C11—C10—C9118.54 (17)
O2—S—C1109.43 (8)C11—C10—H10120.7
O3—S—C1107.29 (8)C9—C10—H10120.7
O2—S—C9108.03 (8)C12—C11—C10120.53 (19)
O3—S—C9107.59 (8)C12—C11—H11119.7
C1—S—C9103.94 (8)C10—C11—H11119.7
C8—O1—C7106.96 (13)C11—C12—C13120.35 (19)
C8—C1—C2107.46 (15)C11—C12—H12119.8
C8—C1—S126.78 (14)C13—C12—H12119.8
C2—C1—S125.53 (13)C14—C13—C12120.26 (19)
C3—C2—C7119.27 (16)C14—C13—H13119.9
C3—C2—C1136.18 (16)C12—C13—H13119.9
C7—C2—C1104.55 (15)C13—C14—C9118.66 (18)
C4—C3—C2118.31 (17)C13—C14—H14120.7
C4—C3—H3120.8C9—C14—H14120.7
C2—C3—H3120.8C4—C15—H15A109.5
C3—C4—C5119.98 (17)C4—C15—H15B109.5
C3—C4—C15119.65 (18)H15A—C15—H15B109.5
C5—C4—C15120.36 (17)C4—C15—H15C109.5
C6—C5—C4123.47 (17)H15A—C15—H15C109.5
C6—C5—H5118.3H15B—C15—H15C109.5
C4—C5—H5118.3C6—C16—H16A109.5
C7—C6—C5114.32 (17)C6—C16—H16B109.5
C7—C6—C16122.04 (18)H16A—C16—H16B109.5
C5—C6—C16123.64 (17)C6—C16—H16C109.5
O1—C7—C6124.99 (16)H16A—C16—H16C109.5
O1—C7—C2110.38 (15)H16B—C16—H16C109.5
C6—C7—C2124.63 (17)C8—C17—H17A109.5
C1—C8—O1110.64 (15)C8—C17—H17B109.5
C1—C8—C17134.26 (17)H17A—C17—H17B109.5
O1—C8—C17115.10 (15)C8—C17—H17C109.5
C14—C9—C10121.66 (17)H17A—C17—H17C109.5
C14—C9—S119.35 (14)H17B—C17—H17C109.5
C10—C9—S118.98 (13)
O2—S—C1—C8−24.52 (19)C3—C2—C7—O1−179.24 (14)
O3—S—C1—C8−155.54 (16)C1—C2—C7—O10.79 (18)
C9—S—C1—C890.68 (17)C3—C2—C7—C61.4 (3)
O2—S—C1—C2161.63 (14)C1—C2—C7—C6−178.60 (16)
O3—S—C1—C230.61 (17)C2—C1—C8—O10.6 (2)
C9—S—C1—C2−83.18 (16)S—C1—C8—O1−174.20 (12)
C8—C1—C2—C3179.23 (19)C2—C1—C8—C17−179.81 (19)
S—C1—C2—C3−5.9 (3)S—C1—C8—C175.4 (3)
C8—C1—C2—C7−0.81 (19)C7—O1—C8—C1−0.07 (19)
S—C1—C2—C7174.03 (13)C7—O1—C8—C17−179.78 (15)
C7—C2—C3—C4−0.7 (2)O2—S—C9—C1420.07 (16)
C1—C2—C3—C4179.30 (18)O3—S—C9—C14150.32 (14)
C2—C3—C4—C5−0.3 (3)C1—S—C9—C14−96.11 (15)
C2—C3—C4—C15−179.10 (17)O2—S—C9—C10−160.35 (13)
C3—C4—C5—C60.8 (3)O3—S—C9—C10−30.10 (15)
C15—C4—C5—C6179.52 (17)C1—S—C9—C1083.47 (15)
C4—C5—C6—C7−0.1 (3)C14—C9—C10—C11−0.5 (3)
C4—C5—C6—C16179.55 (17)S—C9—C10—C11179.95 (13)
C8—O1—C7—C6178.91 (16)C9—C10—C11—C120.5 (3)
C8—O1—C7—C2−0.48 (18)C10—C11—C12—C13−0.2 (3)
C5—C6—C7—O1179.76 (15)C11—C12—C13—C14−0.1 (3)
C16—C6—C7—O10.1 (3)C12—C13—C14—C90.2 (3)
C5—C6—C7—C2−0.9 (3)C10—C9—C14—C130.1 (3)
C16—C6—C7—C2179.37 (16)S—C9—C14—C13179.70 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.952.813.747 (3)169
C16—H16C···O3ii0.982.483.403 (2)158
C17—H17A···O20.982.423.135 (3)129

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2106).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1823–o1824.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4042.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography