PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o799.
Published online 2008 April 4. doi:  10.1107/S1600536808008726
PMCID: PMC2961300

3,5-Dibromo-2-hydroxy­benzaldehyde

Abstract

The title compound, C7H4Br2O2, exhibits a layer packing structure via weak π–π stacking inter­actions [centroid–centroid distances between adjacent aromatic rings are 4.040 (8) and 3.776 (7) Å]. Mol­ecules in each layer are linked by inter­molecular O—H(...)O hydrogen bonding and Br(...)Br inter­actions [3.772 (4) Å]. There are two mol­ecules in the asymmetric unit.

Related literature

For related compounds, see Harkat et al. (2008 [triangle]); Lu et al. (2006 [triangle]); Duan et al. (2007 [triangle]); Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o799-scheme1.jpg

Experimental

Crystal data

  • C7H4Br2O2
  • M r = 279.92
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o799-efi5.jpg
  • a = 16.474 (8) Å
  • b = 14.025 (10) Å
  • c = 7.531 (7) Å
  • β = 103.212 (2)°
  • V = 1694 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 9.52 mm−1
  • T = 291 (2) K
  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.450, T max = 0.450 (expected range = 0.386–0.386)
  • 8777 measured reflections
  • 3328 independent reflections
  • 1670 reflections with I > 2σ(I)
  • R int = 0.109

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.105
  • S = 0.79
  • 3328 reflections
  • 202 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008726/at2547sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008726/at2547Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

WH acknowledges the National Natural Science Found­ation of China (No. 20301009) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for financial support.

supplementary crystallographic information

Comment

Slicylaldehyde and its derivatives are an important class of compounds which can be used in a variety of studies such as organic synthesis, catalyst, drug design, spicery industry and life science and so on (Harkat et al., 2008). In the past few decades, a continuing attention has been drawn to the derivatives of the salicylaldehyde and their metal complexes for the investigation of luminescent properties which could be finely tuned by different substituent groups bonded to the phenolic ring (Lu et al., 2006; Duan et al., 2007; Zhang et al., 2007). In this paper, we report the X-ray structure of 3,5-dibromo-2-hydroxybenzaldehyde, (I).

The molecular structure of (I) is illustrated in Fig. 1. There are two crystallographically independent molecules in the asymmetric unit, and both of them are essentially planar with the dihedral angle of 1.82 (6)°.

The C—H···O and O—H···O hydrogen bonding interactions contribute to the stabilizations of the molecular and crystal structures (Fig. 2 and Table 1). A layer packing structure is formed with the mean interlayer separation of 4.040 (8) and 3.776 (7) Å for two sets of molecules. The centeroid-to-centeriod separations between the adjacent aromatic rings are 4.040 (8) and 3.776 (7) Å, respectively (Fig. 3), indicative of weak π–π stacking interactions.

Experimental

The title compound was obtained as received. Single crystals suitable for X-ray diffraction measurement were formed after 5 days in ethyl acetate by slow evaporation at room temperature in air. Analysis calculated for C7H4O4Br2: C 30.04, H 1.44%. Found: C 30.08, H 1.39%. FT—IR (KBr pellets, cm-1): 3180(m), 3069(m), 1681(versus), 1662(versus), 1597(m), 1448(s), 1408(s), 1281(versus), 1198(s), 1151(m), 1134(m), 1098(m), 919(s), 877(s), 712(m) and 677(s).

Refinement

The H atoms bonded with carbon atoms were placed in geometrically idealized positions (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
An ORTEP drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A perspective view of the intralayer intermolecular hydrogen-bond contacts among molecules in the title compound. Hydrogen bonds and Br–Br interactions are shown as dashed lines. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 1/2; (ii) - x + 1,-1/2 ...
Fig. 3.
A perspective view of the interlayer π–π stacking interactions together with the centroid–centroid contacts.

Crystal data

C7H4Br2O2F000 = 1056
Mr = 279.92Dx = 2.195 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1688 reflections
a = 16.474 (8) Åθ = 2.9–22.8º
b = 14.025 (10) ŵ = 9.52 mm1
c = 7.531 (7) ÅT = 291 (2) K
β = 103.212 (2)ºBlock, yellow
V = 1694 (2) Å30.10 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer3328 independent reflections
Radiation source: fine-focus sealed tube1670 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.109
T = 291(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −20→15
Tmin = 0.450, Tmax = 0.450k = −17→16
8777 measured reflectionsl = −7→9

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045  w = 1/[σ2(Fo2) + (0.0451P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 0.79Δρmax = 0.67 e Å3
3328 reflectionsΔρmin = −0.55 e Å3
202 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (3)
Secondary atom site location: difference Fourier map

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.33358 (5)0.40384 (5)0.34454 (11)0.0666 (3)
Br20.32451 (4)−0.00188 (5)0.34528 (10)0.0653 (3)
Br30.10268 (5)0.96790 (5)0.39100 (13)0.0750 (3)
Br4−0.12580 (4)0.67358 (6)0.46512 (11)0.0727 (3)
C10.5095 (4)0.1950 (4)0.3046 (8)0.0424 (15)
C20.4701 (4)0.2838 (4)0.3143 (8)0.0455 (16)
C30.3876 (4)0.2848 (5)0.3376 (8)0.0490 (17)
C40.3467 (4)0.2004 (5)0.3511 (9)0.0539 (18)
H40.29250.20160.36810.065*
C50.3858 (4)0.1130 (5)0.3396 (8)0.0504 (17)
C60.4670 (4)0.1100 (5)0.3151 (8)0.0488 (17)
H60.49270.05180.30590.059*
C70.5945 (4)0.1906 (5)0.2718 (9)0.0574 (19)
H70.61770.13060.26490.069*
C80.1215 (4)0.6721 (5)0.4036 (9)0.0494 (17)
C90.1402 (4)0.7692 (5)0.3912 (8)0.0456 (16)
C100.0787 (4)0.8359 (4)0.4063 (8)0.0477 (17)
C110.0001 (4)0.8089 (5)0.4295 (9)0.0542 (18)
H11−0.03930.85480.43950.065*
C12−0.0188 (4)0.7110 (5)0.4376 (9)0.0510 (18)
C130.0415 (4)0.6440 (5)0.4260 (8)0.0518 (17)
H130.02940.57950.43290.062*
C140.1838 (5)0.5982 (5)0.3899 (10)0.066 (2)
H140.16890.53490.40110.079*
O10.6364 (3)0.2604 (3)0.2531 (7)0.0702 (15)
O20.5114 (3)0.3678 (3)0.3080 (7)0.0655 (13)
H20.55870.35680.29600.098*
O30.2528 (3)0.6135 (3)0.3652 (8)0.0762 (15)
O40.2139 (2)0.8015 (3)0.3645 (7)0.0563 (12)
H4A0.24220.75630.34520.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0687 (5)0.0551 (5)0.0819 (6)0.0197 (4)0.0292 (4)0.0055 (4)
Br20.0571 (5)0.0538 (5)0.0879 (6)−0.0152 (4)0.0226 (4)−0.0017 (4)
Br30.0666 (5)0.0371 (5)0.1317 (8)0.0011 (4)0.0441 (5)−0.0014 (5)
Br40.0484 (5)0.0764 (6)0.0966 (6)−0.0142 (4)0.0233 (4)0.0000 (5)
C10.041 (4)0.039 (4)0.048 (4)−0.005 (3)0.012 (3)0.000 (3)
C20.054 (4)0.034 (4)0.049 (4)−0.005 (3)0.012 (3)0.004 (3)
C30.048 (4)0.051 (5)0.047 (4)0.010 (3)0.010 (3)−0.001 (4)
C40.043 (4)0.060 (5)0.060 (4)−0.003 (4)0.016 (3)−0.004 (4)
C50.050 (4)0.049 (5)0.054 (4)−0.007 (3)0.015 (3)−0.008 (4)
C60.040 (4)0.046 (4)0.060 (5)−0.003 (3)0.011 (3)0.001 (4)
C70.050 (4)0.046 (5)0.078 (5)0.008 (3)0.018 (4)0.006 (4)
C80.053 (4)0.041 (4)0.055 (4)−0.004 (3)0.014 (3)0.003 (3)
C90.043 (4)0.046 (4)0.049 (4)0.001 (3)0.011 (3)−0.001 (3)
C100.049 (4)0.041 (4)0.055 (4)−0.002 (3)0.015 (3)−0.001 (3)
C110.049 (4)0.056 (5)0.059 (4)0.002 (4)0.016 (3)−0.005 (4)
C120.041 (4)0.063 (5)0.052 (4)0.001 (3)0.018 (3)0.007 (4)
C130.053 (4)0.042 (4)0.062 (5)−0.010 (3)0.017 (3)0.005 (4)
C140.077 (6)0.035 (4)0.091 (6)0.013 (4)0.028 (5)0.011 (4)
O10.049 (3)0.052 (3)0.116 (4)−0.002 (3)0.032 (3)0.010 (3)
O20.057 (3)0.045 (3)0.098 (4)0.001 (2)0.026 (3)0.004 (3)
O30.059 (3)0.049 (3)0.130 (5)0.013 (3)0.043 (3)0.013 (3)
O40.037 (3)0.041 (3)0.097 (4)0.001 (2)0.029 (2)−0.002 (3)

Geometric parameters (Å, °)

Br1—C31.898 (6)C7—H70.9300
Br2—C51.906 (6)C8—C91.404 (9)
Br3—C101.902 (6)C8—C131.424 (8)
Br4—C121.895 (6)C8—C141.479 (9)
C1—C61.394 (8)C9—O41.355 (7)
C1—C21.413 (8)C9—C101.402 (8)
C1—C71.477 (8)C10—C111.398 (8)
C2—O21.368 (7)C11—C121.412 (9)
C2—C31.410 (8)C11—H110.9300
C3—C41.377 (8)C12—C131.384 (8)
C4—C51.397 (8)C13—H130.9300
C4—H40.9300C14—O31.213 (8)
C5—C61.393 (8)C14—H140.9300
C6—H60.9300O2—H20.8200
C7—O11.225 (7)O4—H4A0.8200
C6—C1—C2120.5 (6)C9—C8—C14120.7 (6)
C6—C1—C7118.7 (6)C13—C8—C14119.4 (6)
C2—C1—C7120.7 (6)O4—C9—C10118.6 (6)
O2—C2—C3119.8 (6)O4—C9—C8123.5 (6)
O2—C2—C1121.3 (6)C10—C9—C8118.0 (6)
C3—C2—C1118.9 (6)C11—C10—C9122.4 (6)
C4—C3—C2120.2 (6)C11—C10—Br3118.9 (5)
C4—C3—Br1120.9 (5)C9—C10—Br3118.7 (5)
C2—C3—Br1118.9 (5)C10—C11—C12119.3 (6)
C3—C4—C5120.6 (6)C10—C11—H11120.4
C3—C4—H4119.7C12—C11—H11120.4
C5—C4—H4119.7C13—C12—C11119.3 (6)
C6—C5—C4120.3 (6)C13—C12—Br4121.2 (5)
C6—C5—Br2120.5 (5)C11—C12—Br4119.6 (5)
C4—C5—Br2119.1 (5)C12—C13—C8121.1 (6)
C5—C6—C1119.5 (6)C12—C13—H13119.4
C5—C6—H6120.2C8—C13—H13119.4
C1—C6—H6120.2O3—C14—C8125.1 (7)
O1—C7—C1124.5 (6)O3—C14—H14117.4
O1—C7—H7117.7C8—C14—H14117.4
C1—C7—H7117.7C2—O2—H2109.5
C9—C8—C13119.9 (6)C9—O4—H4A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.942.660 (6)146
O4—H4A···O30.822.012.713 (6)143
O4—H4A···O1i0.822.292.863 (6)128
C7—H7···O3ii0.932.553.122 (8)120

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2547).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Duan, X. F., Zeng, J., Zhang, Z. B. & Zi, G. F. (2007). J. Org. Chem.72, 10283–10286. [PubMed]
  • Harkat, H., Blanc, A., Weibel, J. M. & Pale, P. (2008). J. Org. Chem.73, 1620–1623. [PubMed]
  • Lu, Z. L., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem.45, 3538–3548. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535–m536.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography