PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o803–o804.
Published online 2008 April 4. doi:  10.1107/S1600536808006284
PMCID: PMC2961298

3,5,7-Tripropyl-1-aza­adamantane-4,6,10-triol

Abstract

The title compound, C18H33NO3, was prepared according to a highly diastereoselective hydrogenation procedure from 3,5,7-triallyl-1-aza­adamantane-4,6,10-trione. The crystal structure of the title compound contains two crystallographically independent mol­ecules (Z′ = 2), which are linked by inter­molecular hydrogen bonding into chains. In contrast to the aza­adamantanones, the aza­adamantanetriol core of the title compound does not show any particular C—C bond elongation.

Related literature

For related literature on the consequences of through-bond donor–acceptor inter­actions in β-amino­ketones azaadaman­tones, see: Lampkins et al. (2008 [triangle]). For details on mol­ecular receptors based on a polyfunctionalized rigid platform, see: Guarise et al. (2006 [triangle]); Haberhauer et al. (2005 [triangle]); Li et al. (2005 [triangle]). For information about mol­ecules displaying multiple formula units per crystallographic asymmetric unit, see: Steiner (2000 [triangle]). For bond lengths in similar compounds, see: Lampkins et al. (2008 [triangle]); Allen et al. (1987 [triangle]). Details on the synthesis can be found in: Risch (1985 [triangle]); Li et al. (2005 [triangle]). For details of data collection and refinement procedures, see: Görbitz (1999 [triangle]); Guarise et al. (2006 [triangle]); Prince (1982 [triangle]); Watkin (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o803-scheme1.jpg

Experimental

Crystal data

  • C18H33NO3
  • M r = 311.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o803-efi1.jpg
  • a = 13.1922 (2) Å
  • b = 22.6174 (5) Å
  • c = 13.1144 (3) Å
  • β = 114.4470 (10)°
  • V = 3562.17 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 150 K
  • 0.43 × 0.35 × 0.14 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 16642 measured reflections
  • 8498 independent reflections
  • 5272 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.054
  • S = 1.06
  • 5272 reflections
  • 397 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006284/nc2092sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006284/nc2092Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Recently, an increasing number of molecular receptors based on a polyfunctionalized rigid platform have been reported (Guarise et al., 2006; Haberhauer et al., 2005 ; Li et al., 2005). Among them, adamantane and aza-adamantane scaffolds offer the guarantee of a well-defined environment as a result of axial or equatorial substituent orientation. The title compound shows a perfectly constraint face with three hydroxyl groups in axial positions that could potentially be used, after introduction of suitable ligands, as oriented binding sites for a wide range of applications.

The asymmetric unit of the title compound consists of two independent molecules(A and B) per unit-cell (Z'=2) (Steiner, 2000). This feature arises from the different orientation of one of the propyl group (C11-C12-C13 and C29-C30-C31). Contrary to the case of aza-adamantanone systems which show several C-C bond elongations (Lampkins et al., 2008), all angles and distances within the two molecules agree well with the expected values from the literature (Allen et al., 2006). Each independant molecule of the title compound displays two intra-molecular O-H···O hydrogen bonds and one O-H···N inter-molecular. The later leads to the formation of infinite one-dimensional chains along [2 0 1]. The chains are composed of alternated molecules A and B.

Experimental

The title compound was prepared according to a hydrogenation procedure adapted from Risch (1985). A 100-ml reactor vessel was charged with 80 mg of 3,5,7-triallyl-1-aza-adamantane-4,6,10-trione (0.267 mmol) (Li et al., 2005), 88 mg of platinum oxide (0.388 mmol) and 20 ml of a 1:1 THF/0.1 N HCl mixture. The reaction mixture was hydrogenated (10 bar H2) for 50 h at room temperature. After filtration over Celite, the aqueous solution was concentrated under reduced pressure (200 mbar) basified with potassium carbonate and extracted with four 80-ml portions of ethyl acetate. The combined organic phases were then dried over Na2SO4 and concentrated in vacuo. Flash chromatography purification (petroleum ether/ethyl acetate 1:1 then neat ethyl acetate) afforded the title compound as a cristalline white powder (54 mg, 65%). X-ray quality single crystals were obtained by slow evaporation from a cyclohexane/ethyl acetate solution.

Refinement

Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997). All non hydrogen atoms were refined with anisotropic displacement parameters. The H atoms were all located in a difference map and initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.954–1.014 and O—H = 0.794–0.836 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom). In the final refinement the H-atoms were refined using a riding model.

Figures

Fig. 1.
Molecule A of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted fo clarity.
Fig. 2.
Molecule B of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted fo clarity.

Crystal data

C18H33NO3F000 = 1376
Mr = 311.45Dx = 1.162 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 8626 reflections
a = 13.1922 (2) Åθ = 0.7–27.9º
b = 22.6174 (5) ŵ = 0.08 mm1
c = 13.1144 (3) ÅT = 150 K
β = 114.4470 (10)ºBlock, colorless
V = 3562.17 (13) Å30.43 × 0.35 × 0.14 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer5272 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 150 Kθmax = 27.9º
[var phi] & ω scansθmin = 1.8º
Absorption correction: noneh = −16→17
16642 measured reflectionsk = −29→29
8498 independent reflectionsl = −17→17

Refinement

Refinement on FHydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045  Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.361 0.287 0.915E-01
wR(F2) = 0.054(Δ/σ)max = 0.0003
S = 1.06Δρmax = 0.29 e Å3
5272 reflectionsΔρmin = −0.18 e Å3
397 parametersExtinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O40.22669 (10)0.25151 (5)0.14425 (9)0.0370
C220.31510 (13)0.23591 (7)0.24925 (13)0.0319
C210.32122 (13)0.16842 (7)0.27185 (13)0.0317
C280.22217 (13)0.14597 (8)0.29517 (13)0.0321
O60.11955 (9)0.14471 (6)0.19701 (9)0.0394
C250.21442 (12)0.18139 (7)0.39228 (13)0.0307
C240.20674 (12)0.24822 (7)0.36626 (13)0.0307
C230.30828 (13)0.27030 (7)0.34760 (13)0.0318
C320.30115 (14)0.33789 (8)0.32981 (15)0.0363
C330.40054 (15)0.36720 (8)0.31923 (16)0.0427
C340.38186 (18)0.43335 (9)0.29532 (17)0.0490
C270.41327 (13)0.25457 (7)0.45347 (14)0.0335
N20.42274 (11)0.19088 (6)0.47731 (11)0.0325
C260.32503 (13)0.17096 (8)0.49585 (13)0.0323
C200.42662 (13)0.15834 (8)0.38098 (13)0.0332
O50.10637 (9)0.26078 (5)0.26700 (9)0.0358
C350.11432 (13)0.16295 (8)0.41669 (14)0.0348
C360.11823 (16)0.10271 (9)0.47005 (18)0.0468
C370.01314 (19)0.09196 (11)0.4888 (2)0.0652
C290.32990 (14)0.13606 (8)0.17273 (14)0.0360
C300.33494 (17)0.06849 (8)0.17741 (15)0.0426
C310.33958 (17)0.04267 (9)0.07231 (16)0.0464
O20.67551 (10)0.29792 (6)0.42136 (11)0.0413
C60.77461 (13)0.29360 (8)0.40309 (14)0.0353
C70.75659 (13)0.26000 (8)0.29401 (14)0.0338
C80.87254 (14)0.25041 (8)0.29625 (15)0.0380
N10.93330 (11)0.30585 (7)0.30284 (12)0.0385
C20.86849 (14)0.34194 (9)0.20364 (14)0.0380
C30.75199 (13)0.35754 (8)0.19632 (13)0.0333
C100.69017 (12)0.29876 (8)0.19190 (13)0.0320
O30.58136 (9)0.30951 (5)0.18883 (9)0.0341
C40.76841 (13)0.39174 (8)0.30365 (13)0.0350
C50.83343 (13)0.35359 (8)0.40852 (14)0.0351
C90.94652 (14)0.33854 (9)0.40532 (14)0.0392
C140.85052 (15)0.38593 (8)0.51758 (14)0.0402
C150.91418 (17)0.44422 (9)0.54001 (16)0.0468
C160.9286 (2)0.47099 (10)0.65167 (17)0.0577
O10.66640 (10)0.41465 (6)0.30104 (10)0.0421
C110.68602 (14)0.39337 (8)0.08912 (14)0.0377
C120.72891 (18)0.45457 (9)0.08051 (17)0.0520
C130.6514 (2)0.48575 (10)−0.02511 (18)0.0578
C170.70163 (15)0.19948 (8)0.29070 (15)0.0399
C180.6838 (2)0.16093 (9)0.19042 (19)0.0578
C190.6477 (2)0.09893 (10)0.1998 (2)0.0639
H2210.38440.24680.24350.0364*
H2810.23870.10390.32010.0372*
H2410.20470.26950.43120.0362*
H3210.29180.35570.39260.0433*
H3220.23440.34610.26170.0433*
H3310.46650.36210.39060.0517*
H3320.41400.34820.25790.0522*
H3410.44530.45150.28840.0734*
H3420.37100.45310.35530.0734*
H3430.31520.44000.22680.0738*
H2710.41150.27540.51810.0400*
H2720.48030.26690.44410.0397*
H2610.32310.19270.55870.0376*
H2620.33350.12850.51320.0369*
H2010.49230.17160.37040.0379*
H2020.43540.11620.40030.0387*
H3510.10730.19260.46730.0420*
H3520.04680.16520.34510.0413*
H3610.18260.10050.54240.0572*
H3620.12550.07140.42110.0579*
H3720.01810.05450.52400.1066*
H3730.00580.12340.53650.1065*
H371−0.05290.09130.41760.1066*
H2920.39770.14990.16660.0441*
H2910.26600.14730.10590.0432*
H3020.39930.05530.24350.0525*
H3010.26750.05280.18380.0534*
H3120.3437−0.00010.07750.0710*
H3110.40580.05790.06420.0701*
H3130.27270.05380.00720.0718*
H810.91510.22630.36110.0457*
H820.86590.22910.22870.0451*
H1010.68000.27750.12260.0385*
H410.81780.42700.30910.0411*
H910.98520.37620.40790.0453*
H920.99110.31500.47070.0451*
H1410.89030.35870.57970.0480*
H1420.77830.39310.51830.0461*
H1510.98770.43770.53960.0542*
H1520.87300.47200.48040.0538*
H1610.96920.50900.66480.0816*
H1630.97160.44480.71310.0814*
H1620.85700.47910.65490.0813*
H1120.68280.36970.02560.0445*
H1110.61000.39820.08300.0418*
H1220.80280.45120.08040.0611*
H1210.73580.47860.14460.0606*
H1320.67940.5245−0.03290.0821*
H1310.64030.4627−0.09070.0830*
H1330.57900.4914−0.02440.0836*
H1710.74900.17780.35840.0495*
H1720.63030.20580.29530.0493*
H1810.75070.16010.17840.0724*
H1820.62650.17910.12360.0733*
H1920.63090.07680.13050.0976*
H1930.70680.07900.26040.0985*
H1910.58230.09930.21720.0980*
H610.82580.26990.46570.0408*
H30.53790.31250.12090.0493*
H20.62480.30680.36080.0653*
H40.17290.26120.15860.0565*
H50.06050.27830.28410.0541*
H10.62090.39010.27050.0617*
H60.09360.17860.19390.0573*
H210.90780.37820.20690.0497*
H220.86200.32150.13580.0487*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O40.0343 (6)0.0458 (7)0.0311 (6)0.0050 (5)0.0137 (5)0.0050 (5)
C220.0273 (7)0.0388 (9)0.0293 (8)0.0020 (6)0.0116 (6)0.0026 (6)
C210.0291 (8)0.0384 (8)0.0284 (7)0.0031 (6)0.0126 (6)0.0005 (6)
C280.0279 (7)0.0374 (8)0.0287 (7)−0.0001 (6)0.0093 (6)0.0001 (6)
O60.0324 (6)0.0493 (7)0.0323 (6)−0.0034 (5)0.0091 (5)−0.0039 (5)
C250.0259 (7)0.0370 (8)0.0297 (8)0.0015 (6)0.0119 (6)0.0009 (6)
C240.0263 (7)0.0367 (8)0.0288 (7)0.0024 (6)0.0113 (6)0.0015 (6)
C230.0285 (7)0.0350 (8)0.0323 (8)0.0013 (6)0.0128 (6)0.0010 (6)
C320.0349 (8)0.0369 (9)0.0381 (9)0.0024 (7)0.0163 (7)0.0005 (7)
C330.0433 (10)0.0418 (10)0.0456 (10)−0.0037 (8)0.0210 (8)−0.0041 (8)
C340.0589 (12)0.0426 (10)0.0478 (10)−0.0065 (9)0.0245 (9)0.0020 (8)
C270.0267 (7)0.0394 (9)0.0326 (8)0.0008 (6)0.0105 (6)−0.0015 (7)
N20.0265 (6)0.0394 (7)0.0308 (7)0.0020 (5)0.0111 (5)0.0001 (6)
C260.0282 (7)0.0392 (9)0.0288 (8)0.0032 (6)0.0110 (6)0.0016 (6)
C200.0278 (8)0.0410 (9)0.0314 (8)0.0048 (6)0.0130 (6)0.0011 (6)
O50.0264 (5)0.0481 (7)0.0328 (6)0.0075 (5)0.0121 (5)0.0040 (5)
C350.0289 (8)0.0404 (9)0.0352 (8)0.0007 (7)0.0135 (7)0.0011 (7)
C360.0419 (10)0.0494 (11)0.0528 (11)0.0029 (8)0.0233 (9)0.0110 (9)
C370.0587 (13)0.0608 (14)0.0930 (18)−0.0020 (11)0.0483 (13)0.0190 (13)
C290.0375 (9)0.0402 (9)0.0331 (8)0.0017 (7)0.0175 (7)−0.0010 (7)
C300.0536 (11)0.0412 (10)0.0369 (9)0.0001 (8)0.0228 (8)−0.0020 (7)
C310.0568 (11)0.0452 (10)0.0413 (10)−0.0021 (9)0.0245 (9)−0.0061 (8)
O20.0349 (6)0.0527 (8)0.0416 (6)0.0001 (5)0.0211 (5)0.0007 (6)
C60.0289 (8)0.0454 (9)0.0318 (8)0.0045 (7)0.0127 (6)0.0035 (7)
C70.0295 (8)0.0390 (9)0.0341 (8)0.0035 (7)0.0145 (6)0.0015 (7)
C80.0308 (8)0.0448 (10)0.0388 (9)0.0054 (7)0.0148 (7)0.0018 (7)
N10.0295 (7)0.0484 (9)0.0376 (7)0.0019 (6)0.0139 (6)−0.0005 (6)
C20.0308 (8)0.0489 (10)0.0359 (9)−0.0027 (7)0.0156 (7)0.0004 (7)
C30.0295 (8)0.0387 (8)0.0323 (8)−0.0026 (7)0.0133 (6)0.0001 (7)
C100.0252 (7)0.0399 (9)0.0320 (8)0.0005 (6)0.0129 (6)−0.0005 (6)
O30.0246 (5)0.0460 (7)0.0304 (5)0.0011 (5)0.0103 (4)0.0000 (5)
C40.0285 (8)0.0433 (9)0.0323 (8)−0.0009 (7)0.0118 (6)−0.0004 (7)
C50.0282 (8)0.0445 (9)0.0314 (8)0.0007 (7)0.0110 (6)0.0005 (7)
C90.0291 (8)0.0518 (11)0.0344 (8)0.0001 (7)0.0108 (7)0.0000 (7)
C140.0353 (9)0.0511 (11)0.0324 (8)0.0014 (8)0.0121 (7)−0.0009 (7)
C150.0441 (10)0.0503 (11)0.0395 (9)−0.0010 (8)0.0108 (8)−0.0031 (8)
C160.0637 (13)0.0567 (13)0.0444 (11)−0.0011 (10)0.0141 (10)−0.0097 (9)
O10.0347 (6)0.0481 (7)0.0407 (6)0.0053 (5)0.0127 (5)−0.0058 (6)
C110.0360 (9)0.0427 (9)0.0318 (8)−0.0043 (7)0.0115 (7)0.0005 (7)
C120.0532 (11)0.0482 (11)0.0472 (11)−0.0104 (9)0.0133 (9)0.0067 (9)
C130.0705 (14)0.0475 (12)0.0478 (11)−0.0071 (10)0.0170 (10)0.0088 (9)
C170.0400 (9)0.0391 (9)0.0432 (9)0.0016 (7)0.0200 (8)0.0034 (7)
C180.0787 (15)0.0433 (11)0.0572 (13)−0.0092 (10)0.0340 (12)−0.0053 (9)
C190.0616 (14)0.0473 (12)0.0867 (17)−0.0052 (10)0.0344 (13)−0.0071 (12)

Geometric parameters (Å, °)

O4—C221.4323 (19)O2—C61.427 (2)
O4—H40.836O2—H20.824
C22—C211.551 (2)C6—C71.549 (2)
C22—C231.540 (2)C6—C51.550 (2)
C22—H2210.979C6—H610.979
C21—C281.546 (2)C7—C81.533 (2)
C21—C201.545 (2)C7—C101.536 (2)
C21—C291.537 (2)C7—C171.541 (2)
C28—O61.4311 (19)C8—N11.471 (2)
C28—C251.543 (2)C8—H810.970
C28—H2811.000C8—H820.980
O6—H60.833N1—C21.473 (2)
C25—C241.544 (2)N1—C91.480 (2)
C25—C261.546 (2)C2—C31.541 (2)
C25—C351.540 (2)C2—H210.962
C24—C231.541 (2)C2—H220.974
C24—O51.4498 (18)C3—C101.548 (2)
C24—H2410.988C3—C41.541 (2)
C23—C321.543 (2)C3—C111.542 (2)
C23—C271.543 (2)C10—O31.4400 (19)
C32—C331.526 (2)C10—H1010.987
C32—H3210.969O3—H30.839
C32—H3220.978C4—C51.548 (2)
C33—C341.528 (3)C4—O11.429 (2)
C33—H3310.986C4—H411.014
C33—H3320.990C5—C91.548 (2)
C34—H3410.970C5—C141.538 (2)
C34—H3420.965C9—H910.986
C34—H3430.974C9—H920.973
C27—N21.468 (2)C14—C151.525 (3)
C27—H2710.978C14—H1410.982
C27—H2720.982C14—H1420.970
N2—C261.477 (2)C15—C161.522 (3)
N2—C201.481 (2)C15—H1510.983
C26—H2610.969C15—H1520.975
C26—H2620.982C16—H1610.990
C20—H2010.979C16—H1630.972
C20—H2020.981C16—H1620.981
O5—H50.829O1—H10.794
C35—C361.523 (3)C11—C121.517 (3)
C35—H3510.974C11—H1120.976
C35—H3520.992C11—H1110.979
C36—C371.525 (3)C12—C131.513 (3)
C36—H3610.978C12—H1220.978
C36—H3620.987C12—H1210.973
C37—H3720.954C13—H1320.974
C37—H3730.978C13—H1310.964
C37—H3710.979C13—H1330.967
C29—C301.530 (3)C17—C181.513 (3)
C29—H2920.981C17—H1710.980
C29—H2910.965C17—H1720.977
C30—C311.521 (3)C18—C191.502 (3)
C30—H3020.976C18—H1810.960
C30—H3010.992C18—H1820.980
C31—H3120.969C19—H1920.980
C31—H3110.986C19—H1930.964
C31—H3130.973C19—H1910.979
C22—O4—H4106.1C6—O2—H2106.8
O4—C22—C21112.55 (13)O2—C6—C7112.81 (14)
O4—C22—C23111.96 (13)O2—C6—C5114.11 (14)
C21—C22—C23110.71 (13)C7—C6—C5110.76 (13)
O4—C22—H221106.2O2—C6—H61105.0
C21—C22—H221106.7C7—C6—H61107.1
C23—C22—H221108.5C5—C6—H61106.4
C22—C21—C28112.32 (13)C6—C7—C8106.33 (14)
C22—C21—C20106.14 (13)C6—C7—C10109.84 (14)
C28—C21—C20106.18 (13)C8—C7—C10107.59 (13)
C22—C21—C29108.86 (13)C6—C7—C17110.63 (14)
C28—C21—C29112.08 (14)C8—C7—C17109.20 (14)
C20—C21—C29111.09 (13)C10—C7—C17112.98 (14)
C21—C28—O6113.01 (13)C7—C8—N1113.30 (14)
C21—C28—C25110.05 (13)C7—C8—H81107.9
O6—C28—C25113.04 (13)N1—C8—H81108.9
C21—C28—H281106.8C7—C8—H82109.7
O6—C28—H281105.8N1—C8—H82108.4
C25—C28—H281107.7H81—C8—H82108.6
C28—O6—H6104.0C8—N1—C2108.51 (13)
C28—C25—C24110.28 (13)C8—N1—C9109.61 (14)
C28—C25—C26106.56 (12)C2—N1—C9109.42 (14)
C24—C25—C26107.18 (13)N1—C2—C3112.43 (14)
C28—C25—C35112.72 (13)N1—C2—H21109.2
C24—C25—C35109.14 (13)C3—C2—H21108.2
C26—C25—C35110.79 (13)N1—C2—H22110.1
C25—C24—C23111.76 (13)C3—C2—H22110.1
C25—C24—O5110.02 (13)H21—C2—H22106.6
C23—C24—O5108.96 (12)C2—C3—C10107.58 (14)
C25—C24—H241108.0C2—C3—C4107.37 (13)
C23—C24—H241108.3C10—C3—C4109.76 (13)
O5—C24—H241109.7C2—C3—C11110.44 (13)
C22—C23—C24108.97 (13)C10—C3—C11109.11 (13)
C22—C23—C32113.24 (14)C4—C3—C11112.46 (14)
C24—C23—C32110.03 (13)C7—C10—C3110.85 (13)
C22—C23—C27107.17 (13)C7—C10—O3108.86 (13)
C24—C23—C27107.33 (13)C3—C10—O3111.07 (13)
C32—C23—C27109.90 (13)C7—C10—H101109.6
C23—C32—C33116.31 (14)C3—C10—H101108.8
C23—C32—H321107.7O3—C10—H101107.6
C33—C32—H321108.2C10—O3—H3106.2
C23—C32—H322107.5C3—C4—C5110.40 (14)
C33—C32—H322108.5C3—C4—O1112.65 (13)
H321—C32—H322108.3C5—C4—O1113.17 (14)
C32—C33—C34111.86 (16)C3—C4—H41107.6
C32—C33—H331108.5C5—C4—H41105.8
C34—C33—H331108.3O1—C4—H41106.8
C32—C33—H332109.5C4—C5—C6111.37 (13)
C34—C33—H332109.1C4—C5—C9106.53 (14)
H331—C33—H332109.6C6—C5—C9106.02 (14)
C33—C34—H341111.2C4—C5—C14112.05 (15)
C33—C34—H342110.6C6—C5—C14109.69 (14)
H341—C34—H342107.8C9—C5—C14110.97 (14)
C33—C34—H343110.3C5—C9—N1112.46 (14)
H341—C34—H343109.5C5—C9—H91107.4
H342—C34—H343107.3N1—C9—H91109.1
C23—C27—N2112.55 (13)C5—C9—H92109.6
C23—C27—H271109.6N1—C9—H92109.1
N2—C27—H271108.5H91—C9—H92109.1
C23—C27—H272109.9C5—C14—C15116.59 (15)
N2—C27—H272107.7C5—C14—H141107.2
H271—C27—H272108.5C15—C14—H141108.6
C27—N2—C26109.33 (12)C5—C14—H142108.8
C27—N2—C20109.62 (13)C15—C14—H142108.6
C26—N2—C20109.22 (13)H141—C14—H142106.6
C25—C26—N2112.30 (13)C14—C15—C16111.66 (17)
C25—C26—H261108.8C14—C15—H151109.6
N2—C26—H261108.5C16—C15—H151109.5
C25—C26—H262109.2C14—C15—H152108.9
N2—C26—H262108.3C16—C15—H152108.7
H261—C26—H262109.8H151—C15—H152108.4
C21—C20—N2112.41 (13)C15—C16—H161110.9
C21—C20—H201109.5C15—C16—H163110.6
N2—C20—H201108.2H161—C16—H163107.3
C21—C20—H202110.3C15—C16—H162112.2
N2—C20—H202107.7H161—C16—H162106.9
H201—C20—H202108.5H163—C16—H162108.7
C24—O5—H5110.4C4—O1—H1105.5
C25—C35—C36117.98 (14)C3—C11—C12117.40 (15)
C25—C35—H351106.7C3—C11—H112107.4
C36—C35—H351107.3C12—C11—H112108.8
C25—C35—H352107.5C3—C11—H111107.8
C36—C35—H352109.1C12—C11—H111107.0
H351—C35—H352108.0H112—C11—H111108.1
C35—C36—C37110.91 (17)C11—C12—C13111.20 (16)
C35—C36—H361109.9C11—C12—H122109.4
C37—C36—H361108.6C13—C12—H122109.3
C35—C36—H362109.7C11—C12—H121110.5
C37—C36—H362109.3C13—C12—H121108.5
H361—C36—H362108.4H122—C12—H121107.9
C36—C37—H372109.6C12—C13—H132111.9
C36—C37—H373109.0C12—C13—H131111.1
H372—C37—H373110.0H132—C13—H131108.5
C36—C37—H371111.0C12—C13—H133110.4
H372—C37—H371107.7H132—C13—H133107.5
H373—C37—H371109.6H131—C13—H133107.2
C21—C29—C30117.32 (14)C7—C17—C18116.01 (15)
C21—C29—H292107.9C7—C17—H171107.6
C30—C29—H292107.2C18—C17—H171108.2
C21—C29—H291107.4C7—C17—H172108.8
C30—C29—H291107.9C18—C17—H172109.3
H292—C29—H291108.9H171—C17—H172106.7
C29—C30—C31111.38 (15)C17—C18—C19114.05 (19)
C29—C30—H302110.4C17—C18—H181109.4
C31—C30—H302109.9C19—C18—H181109.8
C29—C30—H301109.5C17—C18—H182108.6
C31—C30—H301108.3C19—C18—H182108.2
H302—C30—H301107.3H181—C18—H182106.5
C30—C31—H312110.0C18—C19—H192111.1
C30—C31—H311109.5C18—C19—H193109.1
H312—C31—H311109.2H192—C19—H193108.8
C30—C31—H313109.5C18—C19—H191110.5
H312—C31—H313108.9H192—C19—H191109.8
H311—C31—H313109.7H193—C19—H191107.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C26—H261···O4i0.972.383.261 (3)151
C35—H351···O4i0.972.543.344 (3)140
C31—H312···O1ii0.972.543.355 (3)142
O3—H3···N2iii0.841.872.696 (3)168
O2—H2···O30.822.082.788 (3)143
O4—H4···O50.841.962.696 (3)147
O5—H5···N1iv0.831.902.713 (3)167
O1—H1···O30.792.072.777 (3)149
O6—H6···O50.832.072.810 (3)148

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2092).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Brandenburg, K. & Putz, H. (1996). DIAMOND Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.
  • Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [PubMed]
  • Guarise, C., Prins, L. J. & Scrimin, P. (2006). Tetrahedron, 62, 11670–11674.
  • Haberhauer, G., Oeser, T. & Rominger, F. (2005). Chem. Eur. J.11, 6718–6726. [PubMed]
  • Lampkins, A. J., Li, Y., Al Abbas, A., Abboud, K. A., Ghiviriga, I. & Castellano, R. K. (2008). Chem. Eur. J.14, 1452–1463. [PubMed]
  • Li, H. F., Homan, E. A., Lampkins, A. J., Ghiviriga, I. & Castellano, R. K. (2005). Org. Lett.7, 443–446. [PubMed]
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  • Risch, N. (1985). Chem. Ber.118, 4849–4856.
  • Steiner, T. (2000). Acta Cryst. B56, 673–676. [PubMed]
  • Watkin, D. (1994). Acta Cryst. A50, 411–437.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography