PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o886.
Published online 2008 April 23. doi:  10.1107/S1600536808006223
PMCID: PMC2961297

Methyl 4-amino-3-methyl­benzoate

Abstract

In the mol­ecule of the title compound, C9H11NO2, the methyl C and amino N atoms bonded to the benzene ring lie in the ring plane. Intra­molecular C—H(...)O hydrogen bonding results in the formation of a five-membered planar ring, which is oriented at a dihedral angle of 2.73 (3)° with respect to the benzene ring, so they are nearly coplanar. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains elongated along the c axis and stacked along the b axis.

Related literature

For related literature, see: Ries et al. (1993 [triangle]); Engeli et al. (2000 [triangle]); Kintscher et al. (2004 [triangle]); Goossens et al. (2003 [triangle]); Kurtz et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o886-scheme1.jpg

Experimental

Crystal data

  • C9H11NO2
  • M r = 165.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o886-efi1.jpg
  • a = 7.5670 (15) Å
  • b = 6.1080 (12) Å
  • c = 18.127 (4) Å
  • β = 98.14 (3)°
  • V = 829.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 294 (2) K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.963, T max = 0.981
  • 1747 measured reflections
  • 1620 independent reflections
  • 1079 reflections with I > 2σ(I)
  • R int = 0.022
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.188
  • S = 1.04
  • 1620 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006223/hk2431sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006223/hk2431Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Methyl 3-methyl-4-aminobenzoate is important as an intermedicine to prepare telmisartan, an angiotensin II receptor blocker, on the development of obesity and related metabolic disorders in diet-induced obese mice (Ries et al., 1993). Telmisartan can be used as a therapeutic tool for metabolic syndrome, including visceral obesity (Engeli et al., 2000; Kintscher et al., 2004; Goossens et al., 2003; Kurtz et al., 2004). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the ligand bond lengths (Allen et al., 1987) and angles are within normal ranges. The atoms N and C9 lie in the benzene ring plane. The intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a five-membered planar ring A (O1/C2/C3/C4/H4A), in which it is oriented with respect to the six-membered planar ring B (C3—C8) at a dihedral angle of A/B = 2.73 (3)°. So, they are also nearly coplanar.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains elongated along the c axis and stacked along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound (I) was prepared from 3-methyl-4-aminobenzoic acid (38 g, 250 mmol) in methanol (101 ml, 250 mmol). After the solid has melted, concentrated sulfuric acid (16 ml, 300 mmol) was dropped from the dropping funnel at 363 K, the latter was treated with a mixture of ice and water. The product was filtered by suction. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C9H11NO2F000 = 352
Mr = 165.19Dx = 1.323 Mg m3
Monoclinic, P21/cMelting point: 391(2) K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 7.5670 (15) ÅCell parameters from 25 reflections
b = 6.1080 (12) Åθ = 9–13º
c = 18.127 (4) ŵ = 0.09 mm1
β = 98.14 (3)ºT = 294 (2) K
V = 829.4 (3) Å3Block, colorless
Z = 40.40 × 0.30 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.022
Radiation source: fine-focus sealed tubeθmax = 26.0º
Monochromator: graphiteθmin = 2.3º
T = 294(2) Kh = −9→9
ω/2θ scansk = 0→7
Absorption correction: ψ scan(North et al., 1968)l = 0→22
Tmin = 0.963, Tmax = 0.9813 standard reflections
1747 measured reflections every 200 reflections
1620 independent reflections intensity decay: none
1079 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.188  w = 1/[σ2(Fo2) + (0.06P)2 + 1.3P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1620 reflectionsΔρmax = 0.25 e Å3
109 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N0.8206 (4)0.4908 (5)0.17914 (15)0.0570 (8)
H0A0.87160.61660.17920.068*
H0B0.78110.42790.13760.068*
O10.6922 (3)−0.1169 (4)0.44629 (12)0.0549 (7)
O20.8163 (4)0.1644 (4)0.51362 (13)0.0621 (8)
C10.6852 (5)−0.2393 (6)0.51341 (18)0.0561 (10)
H1A0.6303−0.37880.50120.084*
H1B0.6164−0.15990.54510.084*
H1C0.8041−0.26100.53880.084*
C20.7641 (4)0.0832 (5)0.45389 (18)0.0440 (8)
C30.7726 (4)0.1877 (5)0.38130 (17)0.0404 (7)
C40.7052 (4)0.0892 (5)0.31364 (17)0.0423 (8)
H4A0.6496−0.04640.31450.051*
C50.7176 (4)0.1847 (5)0.24532 (17)0.0405 (8)
C60.8021 (4)0.3903 (5)0.24530 (17)0.0414 (7)
C70.8662 (4)0.4927 (5)0.31251 (18)0.0450 (8)
H7A0.91960.62970.31200.054*
C80.8517 (4)0.3940 (5)0.37935 (18)0.0427 (8)
H8A0.89470.46490.42370.051*
C90.6433 (5)0.0725 (6)0.17397 (18)0.0525 (9)
H9A0.5906−0.06440.18510.079*
H9B0.73770.04630.14480.079*
H9C0.55410.16390.14640.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N0.076 (2)0.0464 (17)0.0479 (17)−0.0106 (16)0.0050 (15)0.0071 (14)
O10.0748 (17)0.0429 (13)0.0455 (13)−0.0097 (13)0.0031 (11)0.0032 (11)
O20.090 (2)0.0538 (16)0.0409 (13)−0.0084 (14)0.0053 (13)−0.0040 (12)
C10.076 (3)0.048 (2)0.0449 (19)−0.0029 (19)0.0100 (17)0.0037 (16)
C20.0489 (19)0.0416 (18)0.0418 (17)0.0019 (16)0.0079 (14)−0.0005 (15)
C30.0425 (17)0.0373 (17)0.0414 (17)0.0040 (14)0.0058 (13)−0.0029 (14)
C40.0430 (18)0.0349 (17)0.0479 (18)−0.0003 (14)0.0021 (14)−0.0008 (14)
C50.0419 (18)0.0344 (16)0.0435 (17)0.0038 (14)0.0003 (13)−0.0020 (14)
C60.0448 (18)0.0325 (16)0.0468 (17)0.0050 (14)0.0065 (14)0.0022 (14)
C70.0458 (19)0.0327 (16)0.056 (2)−0.0036 (14)0.0061 (15)−0.0014 (15)
C80.0477 (18)0.0372 (17)0.0434 (17)0.0030 (15)0.0071 (13)−0.0067 (14)
C90.057 (2)0.051 (2)0.0469 (19)−0.0055 (17)−0.0031 (16)−0.0022 (16)

Geometric parameters (Å, °)

N—C61.372 (4)C4—C51.384 (4)
N—H0A0.8600C4—H4A0.9300
N—H0B0.8600C5—C61.410 (4)
O1—C21.336 (4)C5—C91.501 (4)
O1—C11.435 (4)C6—C71.394 (4)
C1—H1A0.9600C7—C81.372 (4)
C1—H1B0.9600C7—H7A0.9300
C1—H1C0.9600C8—H8A0.9300
O2—C21.206 (4)C9—H9A0.9600
C2—C31.472 (4)C9—H9B0.9600
C3—C41.396 (4)C9—H9C0.9600
C3—C81.398 (4)
C6—N—H0A120.0C4—C5—C6117.6 (3)
C6—N—H0B120.0C4—C5—C9120.9 (3)
H0A—N—H0B120.0C6—C5—C9121.4 (3)
C2—O1—C1116.9 (3)N—C6—C7119.9 (3)
O1—C1—H1A109.5N—C6—C5120.1 (3)
O1—C1—H1B109.5C7—C6—C5120.1 (3)
H1A—C1—H1B109.5C8—C7—C6120.9 (3)
O1—C1—H1C109.5C8—C7—H7A119.5
H1A—C1—H1C109.5C6—C7—H7A119.5
H1B—C1—H1C109.5C7—C8—C3120.4 (3)
O2—C2—O1123.1 (3)C7—C8—H8A119.8
O2—C2—C3125.0 (3)C3—C8—H8A119.8
O1—C2—C3111.9 (3)C5—C9—H9A109.5
C4—C3—C8118.1 (3)C5—C9—H9B109.5
C4—C3—C2122.8 (3)H9A—C9—H9B109.5
C8—C3—C2119.1 (3)C5—C9—H9C109.5
C5—C4—C3122.8 (3)H9A—C9—H9C109.5
C5—C4—H4A118.6H9B—C9—H9C109.5
C3—C4—H4A118.6
C1—O1—C2—O2−2.4 (5)C4—C5—C6—N179.0 (3)
C1—O1—C2—C3177.0 (3)C9—C5—C6—N−1.1 (5)
O2—C2—C3—C4−178.0 (3)C4—C5—C6—C7−1.4 (4)
O1—C2—C3—C42.7 (4)C9—C5—C6—C7178.5 (3)
O2—C2—C3—C82.2 (5)N—C6—C7—C8−179.0 (3)
O1—C2—C3—C8−177.2 (3)C5—C6—C7—C81.3 (5)
C8—C3—C4—C51.7 (5)C6—C7—C8—C30.3 (5)
C2—C3—C4—C5−178.2 (3)C4—C3—C8—C7−1.7 (5)
C3—C4—C5—C6−0.1 (5)C2—C3—C8—C7178.1 (3)
C3—C4—C5—C9180.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···O10.932.402.728 (4)100
N—H0B···O2i0.862.373.142 (3)150

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2431).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Engeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension, 35, 1270–1277. [PubMed]
  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Goossens, G. H., Blaak, E. E. & van Baak, M. A. (2003). Obes. Rev.4, 43–55. [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci.9, 359–369. [PubMed]
  • Kurtz, T. W. & Pravenec, M. (2004). J. Hypertens.22, 2253–2261. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ries, U. J., Mihm, G., Narr, B., Hasselbach, K. M., Wittneben, H., Entzeroth, M., van Meel, J. C. A., Wienen, W. & Hauel, N. H. (1993). J. Med. Chem.36, 4040–4051. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography