PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m724–m725.
Published online 2008 April 26. doi:  10.1107/S1600536808011100
PMCID: PMC2961296

catena-Poly[[cyclo­hexyl­diphenyl­tin(IV)]-μ-hydroxido-κ2 O:O]

Abstract

The title polymeric mixed-organyl tin hydroxide, [Sn(C6H5)2(C6H11)(OH)]n, hass a hydroxide-bridged chain structure; the tin center shows trans-C3SnO2 trigonal bipyramidal coordination. The Sn atom lies on a special position of site symmetry m; the symmetry element relates one phenyl ring to the other and also relates one half of the cyclo­hexyl ring to the other half.

Related literature

For background literature on mixed alk­yl/diaryltin(IV) compounds, see: Koshy et al. (2001 [triangle]). For the synthesis of cyclo­hexyl­diphenyl­tin hydroxide, see: Teo et al. (2007 [triangle]). For the structure of triethyl­tin hydroxide, see: Deacon et al. (1993 [triangle]). For the structure of tribenzyl­tin hydroxide, see: Chen et al. (2005 [triangle]); Reuter (2004 [triangle]). For the structure of triphenyl­tin hydroxide, see: Fu et al. (2003 [triangle]); Glidewell & Liles (1978 [triangle]); Glidewell et al. (2002 [triangle]). For the structure of the mixed organyl compound, benzyl­dimethyl­tin hydroxide, see: Wannagat et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m724-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)2(C6H11)(OH)]
  • M r = 373.05
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m724-efi1.jpg
  • a = 18.3830 (2) Å
  • b = 10.2801 (1) Å
  • c = 8.1762 (1) Å
  • V = 1545.13 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.65 mm−1
  • T = 100 (2) K
  • 0.22 × 0.09 × 0.08 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.771, T max = 0.880
  • 9651 measured reflections
  • 1711 independent reflections
  • 1637 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.071
  • S = 1.28
  • 1711 reflections
  • 97 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.31 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 650 Friedel pairs
  • Flack parameter: 0.02 (4)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011100/tk2257sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011100/tk2257Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Mixed alkyl/diaryltin compounds possess much more useful activity against plant pathogens than the symmetrical triorganotin homologs, particularly if one of the alkyl substituent is a cyclic unit (Koshy et al., 2001). The title compound (I) is the starting reactant for the synthesis of mixed organotin carboxylates.

The compound adopts a zigzag chain motif that propagates along the c-axis of the orthorhombic unit cell; the tin center shows trans-C3SnO2 trigonal bipyramidal coordination (Figs 1 and 2 & Table 1).

Experimental

The compound was synthesized as described previously (Teo et al., 2007). Crystals were obtained by recrystallization from ethanol.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydroxo H atom (O–H 0.84 Å) was similarly treated.

Figures

Fig. 1.
70% Probability thermal ellipsoid plot of the asymmetric unit in Sn(C6H11)(C6H5)2(OH) (I) extended to show the trans-C3SnO2 trigonal bipyramidal coordination geometry. Hydrogen atoms are drawn as spheres of arbitrary radius; symmetry-related atoms are ...
Fig. 2.
Hydroxo-bridged chain motif in (I).

Crystal data

[Sn(C6H5)2(C6H11)(OH)]F000 = 752
Mr = 373.05Dx = 1.604 Mg m3
Orthorhombic, Cmc21Mo Kα radiation λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 8850 reflections
a = 18.3830 (2) Åθ = 2.2–28.3º
b = 10.2801 (1) ŵ = 1.65 mm1
c = 8.1762 (1) ÅT = 100 (2) K
V = 1545.13 (3) Å3Prism, colorless
Z = 40.22 × 0.09 × 0.08 mm

Data collection

Bruker SMART APEXII diffractometer1711 independent reflections
Radiation source: fine-focus sealed tube1637 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 100(2) Kθmax = 27.5º
ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −23→23
Tmin = 0.771, Tmax = 0.880k = −13→13
9651 measured reflectionsl = −9→10

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.017  w = 1/[σ2(Fo2) + (0.0421P)2 + 0.0692P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.28Δρmax = 0.57 e Å3
1711 reflectionsΔρmin = −0.31 e Å3
97 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 650 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (4)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.50000.494121 (18)0.50000 (18)0.01298 (10)
O10.50000.5850 (3)0.2563 (4)0.0165 (6)
H1O0.50000.66660.25980.025*
C10.50000.2980 (4)0.4053 (6)0.0189 (9)
H10.50000.30710.28360.023*
C20.43184 (16)0.2226 (3)0.4465 (5)0.0234 (7)
H2A0.38880.27210.40840.028*
H2B0.42810.21320.56670.028*
C30.4313 (2)0.0883 (3)0.3681 (5)0.0260 (8)
H3A0.38850.03920.40780.031*
H3B0.42680.09770.24800.031*
C40.50000.0125 (4)0.4074 (8)0.0248 (13)
H4A0.5000−0.01020.52510.030*
H4B0.5000−0.06960.34420.030*
C50.60222 (16)0.5831 (3)0.5558 (4)0.0170 (6)
C60.62261 (15)0.7060 (2)0.5004 (5)0.0227 (6)
H60.58970.75480.43520.027*
C70.69028 (19)0.7587 (3)0.5387 (4)0.0296 (8)
H70.70230.84410.50360.036*
C80.74004 (18)0.6867 (4)0.6280 (5)0.0308 (8)
H80.78670.72160.65140.037*
C90.72163 (17)0.5644 (4)0.6826 (5)0.0256 (7)
H90.75530.51490.74490.031*
C100.6529 (3)0.5133 (3)0.6458 (7)0.0247 (9)
H100.64070.42870.68360.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01281 (14)0.01401 (14)0.01211 (16)0.0000.0000.0003 (2)
O10.0227 (14)0.0168 (15)0.0101 (15)0.0000.000−0.0008 (11)
C10.022 (2)0.0167 (19)0.018 (2)0.0000.0000.0005 (17)
C20.0200 (15)0.0215 (14)0.0288 (19)−0.0023 (11)0.0003 (13)−0.0006 (12)
C30.0306 (19)0.0193 (15)0.028 (2)−0.0044 (13)0.0033 (14)0.0001 (14)
C40.038 (4)0.019 (2)0.017 (3)0.0000.000−0.0032 (17)
C50.0168 (13)0.0194 (13)0.0147 (15)−0.0006 (12)0.0029 (11)−0.0018 (11)
C60.0268 (14)0.0242 (12)0.0171 (16)−0.0042 (10)−0.0025 (17)0.001 (2)
C70.0366 (18)0.0302 (16)0.022 (2)−0.0150 (14)0.0004 (14)0.0036 (13)
C80.0213 (16)0.043 (2)0.028 (2)−0.0107 (14)−0.0009 (15)−0.0088 (16)
C90.0174 (15)0.0343 (19)0.0250 (18)0.0007 (13)−0.0047 (13)−0.0072 (15)
C100.023 (2)0.0195 (17)0.032 (3)−0.0007 (11)−0.0051 (18)−0.0014 (14)

Geometric parameters (Å, °)

Sn1—O12.201 (4)C8—C91.377 (5)
Sn1—C12.159 (4)C9—C101.400 (5)
Sn1—C52.139 (3)O1—H1O0.8400
Sn1—C5i2.139 (3)C1—H11.0000
Sn1—O1ii2.248 (4)C2—H2A0.9900
O1—Sn1iii2.248 (4)C2—H2B0.9900
C1—C21.511 (4)C3—H3A0.9900
C1—C2i1.511 (4)C3—H3B0.9900
C2—C31.522 (4)C4—H4A0.9900
C3—C41.518 (4)C4—H4B0.9900
C4—C3i1.518 (4)C6—H60.9500
C5—C101.388 (6)C7—H70.9500
C5—C61.394 (4)C8—H80.9500
C6—C71.393 (4)C9—H90.9500
C7—C81.385 (5)C10—H100.9500
C1—Sn1—C5118.4 (1)C2—C1—H1105.6
C1—Sn1—O194.1 (2)Sn1—C1—H1105.6
C1—Sn1—O1ii89.8 (2)C1—C2—H2A109.2
C5—Sn1—C5i122.9 (2)C3—C2—H2A109.2
C5—Sn1—O190.7 (1)C1—C2—H2B109.2
C5—Sn1—O1ii87.5 (1)C3—C2—H2B109.2
C5i—Sn1—C1118.4 (1)H2A—C2—H2B107.9
C5i—Sn1—O190.7 (1)C4—C3—H3A109.3
C5i—Sn1—O1ii87.5 (1)C2—C3—H3A109.3
O1—Sn1—O1ii176.1 (1)C4—C3—H3B109.3
Sn1—O1—Sn1iii133.7 (2)C2—C3—H3B109.3
C2—C1—C2i112.0 (3)H3A—C3—H3B107.9
C2—C1—Sn1113.5 (2)C3i—C4—H4A109.1
C2i—C1—Sn1113.5 (2)C3—C4—H4A109.1
C1—C2—C3112.1 (3)C3i—C4—H4B109.1
C4—C3—C2111.8 (3)C3—C4—H4B109.1
C3i—C4—C3112.5 (4)H4A—C4—H4B107.8
C10—C5—C6117.4 (3)C7—C6—H6119.3
C10—C5—Sn1118.8 (2)C5—C6—H6119.3
C6—C5—Sn1123.7 (2)C8—C7—H7120.0
C7—C6—C5121.3 (3)C6—C7—H7120.0
C8—C7—C6120.0 (3)C9—C8—H8120.1
C9—C8—C7119.8 (3)C7—C8—H8120.1
C8—C9—C10119.6 (4)C8—C9—H9120.2
C5—C10—C9121.7 (3)C10—C9—H9120.2
Sn1—O1—H1O113.2C5—C10—H10119.1
Sn1iii—O1—H1O113.2C9—C10—H10119.1
C5—Sn1—O1—Sn1iii118.53 (8)C1—Sn1—C5—C10−47.4 (4)
C5i—Sn1—O1—Sn1iii−118.53 (8)O1—Sn1—C5—C10−142.4 (3)
C1—Sn1—O1—Sn1iii0.0O1ii—Sn1—C5—C1041.0 (3)
C5—Sn1—C1—C2151.7 (2)C5i—Sn1—C5—C6−56.7 (4)
C5i—Sn1—C1—C2−22.3 (3)C1—Sn1—C5—C6129.6 (3)
O1—Sn1—C1—C2−115.3 (3)O1—Sn1—C5—C634.5 (3)
O1ii—Sn1—C1—C264.7 (3)O1ii—Sn1—C5—C6−142.0 (3)
C5—Sn1—C1—C2i22.3 (3)C10—C5—C6—C7−2.2 (5)
C5i—Sn1—C1—C2i−151.7 (2)Sn1—C5—C6—C7−179.2 (3)
O1—Sn1—C1—C2i115.3 (3)C5—C6—C7—C82.6 (5)
O1ii—Sn1—C1—C2i−64.7 (3)C6—C7—C8—C9−1.8 (6)
C2i—C1—C2—C3−53.8 (5)C7—C8—C9—C100.7 (6)
Sn1—C1—C2—C3176.0 (3)C6—C5—C10—C91.0 (6)
C1—C2—C3—C452.9 (5)Sn1—C5—C10—C9178.2 (3)
C2—C3—C4—C3i−52.3 (6)C8—C9—C10—C5−0.3 (7)
C5i—Sn1—C5—C10126.3 (3)

Symmetry codes: (i) −x+1, y, z; (ii) −x+1, −y+1, z+1/2; (iii) −x+1, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2257).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z.-M., Wang, J.-Q., Kuang, D.-Z., Feng, Y.-L. & Zhang, F.-X. (2005). Chin. J. Inorg. Chem.21, 1186–1190.
  • Deacon, G. B., Lawrenz, E., Nelson, K. T. & Tiekink, E. R. T. (1993). Main Group Met. Chem.16, 265–269.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fu, C.-X., Zhang, J.-H., Ma, C.-L. & Zhang, Z.-T. (2003). Chin. J. Synth. Chem.11, 189–193.
  • Glidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 129–134.
  • Glidewell, C., Low, J. N., Bomfim, J. A. S., Filgueiras, C. A. L. & Wardell, J. L. (2002). Acta Cryst. C58, m199–m201. [PubMed]
  • Koshy, J., Ansary, A., Lo, K. M. & Kumar Das, V. G. (2001). Met.-Based Drugs, 8, 107–111. [PMC free article] [PubMed]
  • Reuter, H. (2004). Z. Kristallogr. New Cryst. Struct.219, 487–488.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Teo, Y. Y., Lo, K. M. & Ng, S. W. (2007). Acta Cryst. E63, m1365–m1367.
  • Wannagat, U., Dmarath, V., Huch, V., Veith, M. & Harder, U. (1993). J. Organomet. Chem.443, 153–165.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography