PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m622.
Published online 2008 April 4. doi:  10.1107/S1600536808008398
PMCID: PMC2961295

(meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetra­azacyclo­tetra­deca­ne)nickel(II) bis­(O,O′-dibenzyl dithio­phosphate)

Abstract

In the title salt-type 1:2 adduct, [Ni(C16H36N4)](C14H14O2PS2)2 or [Ni(tet-a)][S2P(OCH2Ph)2]2, where tet-a is meso-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­decane, the [Ni(tet-a)]2+ complex cation exhibits a relatively undistorted square-planar geometry about the Ni atom, which lies on an inversion centre and is coordinated by four macrocyclic N atoms. The two O,O′-bis­(2-phenyl­meth­yl) dithio­phosphate anions act as counter-ions to balance the charge and they inter­act with the complex through N—H(...)S hydrogen bonds. Important geometric data include Ni—N distances of 1.958 (3) and 1.963 (3) Å.

Related literature

For related literature, see: Burchell et al. (2000 [triangle]); Ali et al. (2004 [triangle]); Allen (2002 [triangle]); Li et al. (2006 [triangle]); Liu et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m622-scheme1.jpg

Experimental

Crystal data

  • [Ni(C16H36N4)](C14H14O2PS2)2
  • M r = 961.88
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m622-efi1.jpg
  • a = 16.371 (5) Å
  • b = 14.917 (5) Å
  • c = 9.964 (4) Å
  • β = 103.11 (3)°
  • V = 2369.9 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.70 mm−1
  • T = 290 (2) K
  • 0.40 × 0.38 × 0.36 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.768, T max = 0.787
  • 5571 measured reflections
  • 4393 independent reflections
  • 2880 reflections with I > 2σ(I)
  • R int = 0.021
  • 3 standard reflections every 300 reflections intensity decay: 1.1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.127
  • S = 1.01
  • 4393 reflections
  • 275 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008398/dn2324sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008398/dn2324Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the Science and Technology Office of Zigong City, China (Project No. 06 G2045 and 07GX008) is gratefully acknowledged.

supplementary crystallographic information

Comment

Considerable interest in the chemistry of the O,O'-dialkyl dithiophosphate complexes of transition metal results from their value to industry, namely, as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides(Liu et al.,1997;Li et al.,2006).We report here the synthesis and crystal structure of salt-type adduct [Ni(tet-a)][S2P(OCH2Ph)2]2 (tet-a=meso-5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane, a tetradentate macrocyclic nitrogen base (Burchell et al.,2000; Ali et al.,2004 ))

The NiII in the complex cation [Ni(tet-a)]2+ lies on an inversion center and is coordinated by four nitrogen atoms of teteaaza macrocycle in undistorted square-planar geometry (Fig.1). The bond lengths and angles within the complex may be considered normal in comparison with the Cambridge Structural Database results (Allen, 2002).

The two O,O'- di(2-phenylmethyl) dithiophosphates act as counter-ions to balance the charge and they interact with the complex through N—H···S hydrogen bonds (Table 1).

Experimental

A hot solution of tet-a.2H2O (0.77 g, 2 mmol) and Ni(OAc)2.2H2O (0.25 g, 1 mmol) in 20 ml me thanol was quickly added to a hot solution of (PhCH2O)2PSSNH2(C2H5)2(0.77 g, 2 mmol) in 20 ml me thanol. The mixture was refluxed for 6 h, then cooled to room temperature, the orange-red precipitate was collected by filtration, washed with small amounts of methanol.A solution of adduct (1) in DMSO was kept at room temperature, and red block crystals suitable for X-ray diffraction studies were obtained in eight months,.

Refinement

All H atoms attached to C and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methylene), 0.96Å (methyl) or 0.93Å (aromatic) and N—H = 0.91 Å with Uiso(H) = 1.2Ueq(C, N) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.
A View of the title compound showing the atom-labelling scheme.Only one of the two anions is represented for clarity.Displacement ellipsoids are drawn at the 30% probability level. Hydrogen-bonds are shown as dashed lines. For the sake of clarity, H atoms ...

Crystal data

[Ni(C16H36N4)](C14H14O2PS2)2F000 = 1020
Mr = 961.88Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19 reflections
a = 16.371 (5) Åθ = 4.4–5.5º
b = 14.917 (5) ŵ = 0.70 mm1
c = 9.964 (4) ÅT = 290 (2) K
β = 103.11 (3)ºBlock, red
V = 2369.9 (15) Å30.40 × 0.38 × 0.36 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.021
Radiation source: fine-focus sealed tubeθmax = 25.5º
Monochromator: graphiteθmin = 1.3º
T = 290(2) Kh = −7→19
ω/2θ scansk = −18→0
Absorption correction: ψ scan(North et al., 1968)l = −12→11
Tmin = 0.768, Tmax = 0.7873 standard reflections
5571 measured reflections every 300 reflections
4393 independent reflections intensity decay: 1.1%
2880 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0689P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4393 reflectionsΔρmax = 0.52 e Å3
275 parametersΔρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.50000.00000.02975 (18)
S10.39590 (6)0.45749 (7)0.26928 (12)0.0569 (3)
S20.28652 (6)0.64383 (7)0.13356 (11)0.0498 (3)
P10.29136 (6)0.52753 (7)0.22790 (10)0.0406 (3)
O10.26427 (15)0.53665 (18)0.3726 (3)0.0509 (7)
O20.21601 (15)0.47114 (17)0.1325 (3)0.0521 (7)
N10.57052 (16)0.53521 (17)0.1790 (3)0.0341 (7)
H10.53570.52940.23790.041*
N20.55476 (16)0.38269 (17)0.0308 (3)0.0332 (6)
H20.59750.3845−0.01380.040*
C10.6346 (2)0.4648 (2)0.2251 (4)0.0543 (12)
H1A0.65390.46630.32450.065*
H1B0.68240.47470.18440.065*
C20.5955 (2)0.3765 (2)0.1806 (4)0.0478 (10)
H2A0.55400.36190.23300.057*
H2B0.63780.32980.19600.057*
C30.5074 (2)0.2981 (2)−0.0165 (3)0.0353 (8)
H30.46360.29130.03540.042*
C40.4652 (2)0.3050 (2)−0.1675 (4)0.0397 (9)
H4A0.44390.2462−0.19890.048*
H4B0.50770.3204−0.21740.048*
C50.5636 (2)0.2146 (2)0.0096 (4)0.0452 (9)
H5A0.60670.2194−0.04130.068*
H5B0.53040.1621−0.01970.068*
H5C0.58890.21010.10620.068*
C60.6063 (2)0.6282 (2)0.2081 (4)0.0359 (8)
C70.6734 (2)0.6441 (3)0.1263 (4)0.0542 (11)
H7A0.65230.62620.03230.081*
H7B0.72250.60960.16580.081*
H7C0.68770.70660.12930.081*
C80.6443 (2)0.6385 (3)0.3636 (4)0.0543 (11)
H8A0.66020.69980.38380.081*
H8B0.69280.60080.38960.081*
H8C0.60350.62120.41440.081*
C90.1889 (3)0.5872 (3)0.3782 (4)0.0624 (12)
H9A0.14460.57360.29820.075*
H9B0.20030.65100.37830.075*
C100.1620 (2)0.5621 (3)0.5064 (4)0.0511 (10)
C110.1766 (3)0.6179 (3)0.6203 (5)0.0639 (12)
H110.20200.67340.61750.077*
C120.1527 (3)0.5897 (5)0.7399 (5)0.0884 (18)
H120.16230.62660.81710.106*
C130.1153 (4)0.5082 (6)0.7433 (7)0.103 (2)
H130.09950.48990.82300.123*
C140.1010 (4)0.4537 (5)0.6318 (8)0.108 (2)
H140.07590.39800.63490.130*
C150.1237 (3)0.4810 (4)0.5149 (6)0.0822 (15)
H150.11300.44350.43830.099*
C160.2008 (2)0.3800 (3)0.1649 (5)0.0604 (12)
H16A0.19530.37560.25960.072*
H16B0.24730.34250.15420.072*
C170.1214 (2)0.3495 (2)0.0688 (4)0.0472 (10)
C180.0461 (3)0.3895 (3)0.0682 (5)0.0681 (13)
H180.04390.43650.12870.082*
C19−0.0272 (3)0.3613 (4)−0.0213 (5)0.0795 (16)
H19−0.07810.3884−0.01930.095*
C20−0.0245 (3)0.2952 (4)−0.1100 (6)0.0853 (18)
H20−0.07380.2751−0.16820.102*
C210.0503 (4)0.2567 (4)−0.1159 (6)0.108 (2)
H210.05220.2126−0.18110.130*
C220.1229 (3)0.2831 (3)−0.0256 (6)0.0808 (16)
H220.17340.2557−0.02860.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0297 (3)0.0263 (3)0.0308 (3)0.0014 (2)0.0017 (2)0.0013 (3)
S10.0404 (5)0.0557 (6)0.0758 (8)0.0085 (5)0.0157 (5)0.0121 (6)
S20.0506 (6)0.0459 (6)0.0535 (6)−0.0007 (4)0.0129 (5)0.0074 (5)
P10.0349 (5)0.0421 (5)0.0440 (6)−0.0003 (4)0.0070 (4)0.0019 (4)
O10.0459 (14)0.0648 (17)0.0443 (16)0.0157 (13)0.0152 (12)0.0131 (13)
O20.0455 (14)0.0413 (14)0.0633 (18)−0.0079 (11)−0.0011 (13)0.0018 (13)
N10.0367 (14)0.0292 (14)0.0336 (16)0.0000 (12)0.0023 (12)0.0011 (12)
N20.0332 (14)0.0297 (15)0.0358 (16)0.0036 (11)0.0059 (12)0.0022 (12)
C10.052 (2)0.037 (2)0.059 (3)0.0101 (17)−0.019 (2)−0.0037 (19)
C20.058 (2)0.035 (2)0.039 (2)0.0084 (17)−0.0113 (18)0.0016 (17)
C30.0396 (18)0.0274 (16)0.038 (2)−0.0049 (14)0.0082 (15)−0.0018 (15)
C40.0458 (19)0.0307 (18)0.041 (2)−0.0024 (15)0.0071 (16)−0.0022 (16)
C50.060 (2)0.0301 (19)0.044 (2)0.0053 (16)0.0098 (18)0.0000 (17)
C60.0390 (18)0.0301 (18)0.037 (2)−0.0041 (14)0.0046 (15)−0.0051 (15)
C70.041 (2)0.056 (2)0.065 (3)−0.0041 (18)0.0109 (19)0.006 (2)
C80.058 (2)0.050 (2)0.045 (2)0.0027 (19)−0.0075 (19)−0.0090 (19)
C90.060 (2)0.075 (3)0.056 (3)0.025 (2)0.020 (2)0.014 (2)
C100.044 (2)0.061 (3)0.050 (3)0.019 (2)0.0147 (18)0.011 (2)
C110.058 (3)0.073 (3)0.060 (3)0.019 (2)0.012 (2)−0.001 (2)
C120.083 (4)0.128 (5)0.055 (3)0.050 (4)0.018 (3)−0.003 (3)
C130.097 (4)0.138 (6)0.091 (5)0.063 (4)0.061 (4)0.053 (5)
C140.114 (5)0.089 (5)0.146 (6)0.021 (4)0.080 (5)0.043 (5)
C150.095 (4)0.077 (4)0.086 (4)−0.002 (3)0.043 (3)0.001 (3)
C160.055 (2)0.039 (2)0.081 (3)−0.0046 (18)0.004 (2)0.005 (2)
C170.043 (2)0.038 (2)0.059 (3)−0.0055 (17)0.0095 (18)0.0008 (19)
C180.060 (3)0.079 (3)0.064 (3)0.020 (2)0.010 (2)−0.016 (3)
C190.043 (2)0.118 (5)0.076 (4)0.011 (3)0.009 (2)0.010 (3)
C200.066 (3)0.060 (3)0.114 (5)−0.018 (3)−0.014 (3)0.002 (3)
C210.113 (5)0.062 (3)0.126 (5)0.007 (3)−0.023 (4)−0.044 (4)
C220.064 (3)0.062 (3)0.109 (4)0.012 (2)0.006 (3)−0.021 (3)

Geometric parameters (Å, °)

Ni1—N21.958 (3)C7—H7C0.9600
Ni1—N11.963 (3)C8—H8A0.9600
S1—P11.9674 (14)C8—H8B0.9600
S2—P11.9661 (15)C8—H8C0.9600
P1—O11.608 (3)C9—C101.490 (6)
P1—O21.613 (3)C9—H9A0.9700
O1—C91.459 (4)C9—H9B0.9700
O2—C161.432 (4)C10—C151.374 (7)
N1—C11.482 (4)C10—C111.385 (6)
N1—C61.509 (4)C11—C121.400 (7)
N1—H10.9100C11—H110.9300
N2—C21.493 (4)C12—C131.366 (9)
N2—C31.501 (4)C12—H120.9300
N2—H20.9100C13—C141.354 (9)
C1—C21.488 (5)C13—H130.9300
C1—H1A0.9700C14—C151.363 (8)
C1—H1B0.9700C14—H140.9300
C2—H2A0.9700C15—H150.9300
C2—H2B0.9700C16—C171.500 (5)
C3—C41.510 (4)C16—H16A0.9700
C3—C51.535 (4)C16—H16B0.9700
C3—H30.9800C17—C181.369 (5)
C4—C6i1.520 (4)C17—C221.370 (6)
C4—H4A0.9700C18—C191.388 (6)
C4—H4B0.9700C18—H180.9300
C5—H5A0.9600C19—C201.332 (7)
C5—H5B0.9600C19—H190.9300
C5—H5C0.9600C20—C211.366 (7)
C6—C4i1.520 (4)C20—H200.9300
C6—C71.528 (5)C21—C221.376 (6)
C6—C81.541 (5)C21—H210.9300
C7—H7A0.9600C22—H220.9300
C7—H7B0.9600
N2—Ni1—N186.71 (11)C6—C7—H7B109.5
N2i—Ni1—N193.29 (11)H7A—C7—H7B109.5
O1—P1—O2104.07 (15)C6—C7—H7C109.5
O1—P1—S2111.40 (12)H7A—C7—H7C109.5
O2—P1—S2103.65 (11)H7B—C7—H7C109.5
O1—P1—S1105.11 (11)C6—C8—H8A109.5
O2—P1—S1111.05 (11)C6—C8—H8B109.5
S2—P1—S1120.50 (7)H8A—C8—H8B109.5
C9—O1—P1119.1 (2)C6—C8—H8C109.5
C16—O2—P1120.7 (2)H8A—C8—H8C109.5
C1—N1—C6112.0 (2)H8B—C8—H8C109.5
C1—N1—Ni1108.7 (2)O1—C9—C10108.6 (3)
C6—N1—Ni1122.9 (2)O1—C9—H9A110.0
C1—N1—H1103.6C10—C9—H9A110.0
C6—N1—H1103.6O1—C9—H9B110.0
Ni1—N1—H1103.6C10—C9—H9B110.0
C2—N2—C3110.1 (2)H9A—C9—H9B108.3
C2—N2—Ni1107.3 (2)C15—C10—C11118.4 (4)
C3—N2—Ni1121.11 (19)C15—C10—C9120.1 (4)
C2—N2—H2105.8C11—C10—C9121.5 (4)
C3—N2—H2105.8C10—C11—C12119.2 (5)
Ni1—N2—H2105.8C10—C11—H11120.4
N1—C1—C2108.0 (3)C12—C11—H11120.4
N1—C1—H1A110.1C13—C12—C11120.1 (6)
C2—C1—H1A110.1C13—C12—H12119.9
N1—C1—H1B110.1C11—C12—H12119.9
C2—C1—H1B110.1C14—C13—C12120.6 (6)
H1A—C1—H1B108.4C14—C13—H13119.7
C1—C2—N2107.9 (3)C12—C13—H13119.7
C1—C2—H2A110.1C13—C14—C15119.5 (6)
N2—C2—H2A110.1C13—C14—H14120.2
C1—C2—H2B110.1C15—C14—H14120.2
N2—C2—H2B110.1C14—C15—C10122.2 (6)
H2A—C2—H2B108.4C14—C15—H15118.9
N2—C3—C4110.0 (3)C10—C15—H15118.9
N2—C3—C5112.4 (2)O2—C16—C17108.3 (3)
C4—C3—C5110.3 (3)O2—C16—H16A110.0
N2—C3—H3108.0C17—C16—H16A110.0
C4—C3—H3108.0O2—C16—H16B110.0
C5—C3—H3108.0C17—C16—H16B110.0
C3—C4—C6i117.4 (3)H16A—C16—H16B108.4
C3—C4—H4A107.9C18—C17—C22118.0 (4)
C6i—C4—H4A107.9C18—C17—C16121.3 (4)
C3—C4—H4B107.9C22—C17—C16120.6 (4)
C6i—C4—H4B107.9C17—C18—C19121.1 (4)
H4A—C4—H4B107.2C17—C18—H18119.4
C3—C5—H5A109.5C19—C18—H18119.4
C3—C5—H5B109.5C20—C19—C18119.8 (5)
H5A—C5—H5B109.5C20—C19—H19120.1
C3—C5—H5C109.5C18—C19—H19120.1
H5A—C5—H5C109.5C19—C20—C21120.3 (5)
H5B—C5—H5C109.5C19—C20—H20119.8
N1—C6—C4i108.0 (2)C21—C20—H20119.8
N1—C6—C7109.6 (3)C20—C21—C22120.1 (5)
C4i—C6—C7111.1 (3)C20—C21—H21120.0
N1—C6—C8109.6 (3)C22—C21—H21120.0
C4i—C6—C8108.3 (3)C17—C22—C21120.6 (5)
C7—C6—C8110.3 (3)C17—C22—H22119.7
C6—C7—H7A109.5C21—C22—H22119.7

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···S10.912.613.390 (3)144
N2—H2···S2i0.912.503.394 (3)169

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2324).

References

  • Ali, M., Ray, A., Sheldrick, W. S., Mayer-Figge, H., Gao, S. & Sahmesd, A. I. (2004). New J. Chem.28, 412–417.
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Burchell, C. J., Ferguson, G., Lough, A. J. & Glidewell, C. (2000). Acta Cryst. B56, 1054–1062. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Li, Z., Li, J. & Du, S. (2006). J. Mol. Struct.783, 116–121.
  • Liu, C. W., Pitts, J. T. & Fackler, J. P. (1997). Polyhedron, 16, 3899–3909.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography