PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m745–m746.
Published online 2008 April 30. doi:  10.1107/S1600536808012191
PMCID: PMC2961289

(2,2′-Bipyridine-κ2 N,N′)[N-(2-oxido-1-naphthyl­idene)threoninato-κ3 O 1,N,O 2]copper(II)

Abstract

In the title complex, [Cu(C15H13NO4)(C10H8N2)], the Schiff base ligand is derived from the condensation of 2-hydr­oxy-1-naphthaldehyde and l-threonine. The CuII atom is five-coordinated by one N atom and two O atoms from the Schiff base ligand and by two N atoms from a 2,2′-bipyridine ligand in a distorted square-pyramidal geometry. In the crystal structure, the combination of inter­molecular O—H(...)O and C—H(...)O hydrogen bonds leads to a two-dimensional network.

Related literature

For related literature, see: Garnovski et al. (1993 [triangle]); Kalagouda et al. (2006 [triangle]); Wang et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m745-scheme1.jpg

Experimental

Crystal data

  • [Cu(C15H13NO4)(C10H8N2)]
  • M r = 490.99
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m745-efi1.jpg
  • a = 9.955 (2) Å
  • b = 12.180 (3) Å
  • c = 18.438 (4) Å
  • V = 2235.6 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 298 (2) K
  • 0.29 × 0.28 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.757, T max = 0.855
  • 14242 measured reflections
  • 5278 independent reflections
  • 4243 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.088
  • S = 1.04
  • 5278 reflections
  • 300 parameters
  • 492 restraints
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.54 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2229 Friedel pairs
  • Flack parameter: −0.005 (13)

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012191/hy2129sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012191/hy2129Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2004B02) for supporting this work.

supplementary crystallographic information

Comment

Amino acids and their derivatives are very important in molecular biology because of their roles in biochemical reactions. Schiff base complexes have continued to play the role of the most important stereochemical models in main group and transition metal coordination chemistry with their easy preparation and structural variation (Garnovski et al., 1993). So efforts have been made to synthesize and characterize amino Schiff base complexes with transition metals and more and more these new complexes have been reported (Kalagouda et al., 2006; Wang et al., 1999). Herein, we report the synthesis and crystal structure of a copper(II) complex with a tridentate Schiff base ligand derived from the condensation of 2-hydroxy-1-naphthaldehyde and L-threonine.

In the title compound (Fig. 1), the CuII atom is in a distorted square-pyramidal coordination geometry, defined by one N and two O atoms from the Schiff base ligand and two N atoms from a 2, 2'-bipyridine ligand. The Cu atom deviates from the basal equatorial plane (formed by O1, N1, O4 and N3) by 0.230 (2) Å toward N2 atom, with a significantly longer Cu1—N2 bond distance (Table 1). The Cu1—N2 bond deviates greatly from the right position to close the Cu1—N3 bond [the bond angle of N3—Cu1—N2 is 77.3 (1)°]. The bipyridine ligand deviates from planarity, with an angle of 11.7 (1)° between the two pyridyl rings. The least-square plane of the bipyridine ligand is approximately perpendicular to the basal equatorial plane [dihedral angle 100.3 (2)°]. In the crystal, the combination of intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) leads to a two-dimensional network structure (Fig. 2).

Experimental

L-Threonine (0.119 g, 1 mmol) was dissolved in hot methanol (10 ml), which was then added to a methanol solution (3 ml) of 2-hydroxy-1-naphthaldehyde (0.172 g, 1 mmol). The mixture was stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of cupric acetate monohydrate (0.200 g, 1 mmol) was added dropwise and stirred for 2 h. A methanol solution (5 ml) of 2,2'-bipyridine (0.156 g, 1 mmol) was added dropwise and stirred for 4 h. The solution was held at room temperature for 10 d and blue block crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98(CH) and 0.96(CH3) Å, and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C,O) for methyl and hydroxyl groups.

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing diagram of the title compound with hydrogen bonds shown as dashed lines.

Crystal data

[Cu(C15H13NO4)(C10H8N2)]F000 = 1012
Mr = 490.99Dx = 1.459 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5604 reflections
a = 9.955 (2) Åθ = 2.3–26.1º
b = 12.180 (3) ŵ = 1.01 mm1
c = 18.438 (4) ÅT = 298 (2) K
V = 2235.6 (9) Å3Block, blue
Z = 40.29 × 0.28 × 0.16 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer5278 independent reflections
Radiation source: fine-focus sealed tube4243 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 298(2) Kθmax = 28.3º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.757, Tmax = 0.855k = −14→16
14242 measured reflectionsl = −20→24

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034  w = 1/[σ2(Fo2) + (0.0472P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.32 e Å3
5278 reflectionsΔρmin = −0.54 e Å3
300 parametersExtinction correction: none
492 restraintsAbsolute structure: Flack (1983), 2229 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.005 (13)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.32501 (3)1.00767 (2)0.977106 (17)0.03806 (10)
N10.1622 (2)1.08781 (15)0.95744 (11)0.0313 (4)
N20.2672 (3)0.89079 (19)1.06492 (15)0.0491 (6)
N30.5005 (2)0.93672 (19)1.00252 (14)0.0480 (6)
O40.3191 (2)0.93362 (17)0.88490 (11)0.0498 (5)
O20.29386 (19)1.31490 (16)1.05070 (12)0.0512 (5)
O10.37076 (18)1.14608 (15)1.03256 (11)0.0424 (4)
O3−0.05190 (19)1.07490 (16)1.05400 (12)0.0474 (5)
H3−0.09611.10821.02360.071*
C10.2783 (3)1.2178 (2)1.03223 (14)0.0371 (6)
C20.1394 (3)1.17825 (19)1.00763 (13)0.0319 (5)
H280.09121.23790.98320.038*
C30.0596 (3)1.1395 (2)1.07501 (15)0.0368 (6)
H290.11941.09251.10370.044*
C40.0177 (3)1.2351 (3)1.12313 (16)0.0510 (7)
H21A−0.02851.20761.16510.077*
H21B−0.04091.28301.09650.077*
H21C0.09601.27501.13820.077*
C50.0856 (2)1.0765 (2)0.90139 (14)0.0325 (5)
H110.01251.12370.89780.039*
C60.1028 (2)0.9982 (2)0.84450 (12)0.0363 (5)
C70.2228 (3)0.9366 (2)0.83774 (15)0.0415 (6)
C80.2402 (3)0.8722 (3)0.77391 (16)0.0545 (8)
H180.31990.83350.76780.065*
C90.1453 (4)0.8654 (3)0.72205 (16)0.0560 (8)
H190.16150.82240.68130.067*
C100.0215 (3)0.9221 (2)0.72803 (15)0.0452 (6)
C11−0.0016 (3)0.9893 (2)0.78988 (13)0.0397 (6)
C12−0.1269 (3)1.0408 (2)0.79527 (17)0.0495 (7)
H27−0.14531.08450.83540.059*
C13−0.2234 (4)1.0284 (3)0.74247 (19)0.0588 (8)
H26−0.30551.06400.74750.071*
C14−0.2000 (4)0.9635 (3)0.68174 (18)0.0621 (9)
H25−0.26590.95560.64640.074*
C15−0.0795 (4)0.9115 (3)0.67446 (17)0.0572 (8)
H15−0.06340.86850.63370.069*
C160.1466 (4)0.8711 (3)1.0941 (2)0.0660 (9)
H170.07010.89761.07100.079*
C170.1333 (6)0.8119 (3)1.1577 (3)0.0965 (13)
H220.04880.79991.17770.116*
C180.2463 (6)0.7710 (4)1.1912 (3)0.1063 (14)
H360.23870.73021.23360.128*
C190.3693 (5)0.7909 (3)1.1617 (3)0.0883 (12)
H370.44680.76651.18490.106*
C200.3776 (4)0.8483 (2)1.09632 (19)0.0579 (8)
C210.5052 (3)0.8664 (2)1.05811 (19)0.0524 (7)
C220.6242 (4)0.8126 (3)1.0751 (2)0.0701 (10)
H330.62710.76241.11310.084*
C230.7371 (4)0.8343 (3)1.0354 (3)0.0775 (11)
H230.81690.79861.04680.093*
C240.7348 (3)0.9067 (3)0.9799 (3)0.0719 (10)
H240.81180.92220.95320.086*
C250.6136 (3)0.9570 (3)0.9642 (2)0.0634 (9)
H320.60971.00660.92590.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03383 (16)0.04027 (16)0.04008 (17)0.00393 (14)−0.00421 (14)0.00230 (15)
N10.0301 (10)0.0347 (10)0.0291 (11)0.0002 (9)0.0011 (9)−0.0009 (8)
N20.0536 (15)0.0405 (13)0.0531 (16)−0.0017 (11)−0.0030 (13)0.0083 (12)
N30.0409 (13)0.0384 (13)0.0647 (17)0.0035 (10)−0.0093 (12)0.0003 (11)
O40.0456 (11)0.0590 (12)0.0448 (12)0.0165 (10)−0.0016 (11)−0.0084 (9)
O20.0434 (11)0.0466 (11)0.0636 (14)−0.0096 (9)0.0033 (10)−0.0158 (10)
O10.0341 (9)0.0460 (10)0.0470 (12)−0.0025 (8)−0.0092 (9)−0.0015 (9)
O30.0356 (10)0.0553 (12)0.0514 (13)−0.0103 (9)0.0020 (9)0.0047 (10)
C10.0398 (13)0.0424 (13)0.0291 (13)−0.0075 (11)0.0053 (11)−0.0008 (11)
C20.0348 (12)0.0333 (12)0.0275 (12)0.0016 (10)−0.0021 (10)−0.0008 (9)
C30.0339 (13)0.0442 (14)0.0323 (13)−0.0029 (11)0.0013 (11)0.0017 (11)
C40.0536 (18)0.0621 (19)0.0374 (15)0.0016 (15)0.0060 (14)−0.0050 (14)
C50.0326 (12)0.0360 (12)0.0288 (12)0.0016 (10)−0.0001 (10)0.0002 (10)
C60.0456 (13)0.0364 (12)0.0270 (11)0.0003 (13)0.0012 (10)−0.0009 (11)
C70.0486 (15)0.0413 (14)0.0346 (14)0.0009 (12)0.0065 (12)−0.0036 (11)
C80.0637 (19)0.0570 (17)0.0428 (17)0.0105 (15)0.0104 (15)−0.0090 (14)
C90.074 (2)0.0580 (16)0.0354 (15)−0.0053 (16)0.0078 (15)−0.0131 (13)
C100.0586 (16)0.0469 (15)0.0299 (13)−0.0123 (13)0.0007 (13)−0.0025 (11)
C110.0510 (14)0.0392 (13)0.0291 (11)−0.0082 (13)−0.0017 (11)0.0002 (11)
C120.0552 (16)0.0542 (15)0.0392 (15)−0.0003 (13)−0.0115 (13)−0.0065 (12)
C130.0596 (17)0.065 (2)0.0515 (17)−0.0031 (15)−0.0187 (15)−0.0011 (15)
C140.076 (2)0.0662 (18)0.0440 (16)−0.0210 (16)−0.0221 (16)0.0030 (14)
C150.079 (2)0.0582 (17)0.0344 (15)−0.0206 (16)−0.0067 (15)−0.0039 (13)
C160.074 (2)0.0503 (17)0.074 (2)−0.0007 (16)0.0131 (19)0.0167 (16)
C170.104 (3)0.085 (3)0.101 (3)0.002 (2)0.034 (3)0.038 (2)
C180.128 (3)0.098 (3)0.092 (3)0.009 (3)0.010 (3)0.049 (2)
C190.100 (3)0.080 (2)0.084 (2)0.015 (2)−0.007 (2)0.035 (2)
C200.0753 (19)0.0387 (14)0.0597 (18)0.0037 (15)−0.0113 (17)0.0086 (14)
C210.0575 (17)0.0352 (14)0.0645 (18)0.0071 (13)−0.0215 (15)−0.0033 (14)
C220.076 (2)0.0502 (17)0.084 (2)0.0146 (17)−0.029 (2)−0.0012 (17)
C230.060 (2)0.063 (2)0.109 (3)0.0182 (17)−0.031 (2)−0.020 (2)
C240.0489 (17)0.0566 (18)0.110 (3)0.0058 (15)−0.010 (2)−0.015 (2)
C250.0492 (17)0.0481 (16)0.093 (2)0.0030 (13)−0.0050 (18)−0.0026 (16)

Geometric parameters (Å, °)

Cu1—O41.925 (2)C8—H180.9300
Cu1—N11.926 (2)C9—C101.417 (5)
Cu1—N32.005 (2)C9—H190.9300
Cu1—O12.0236 (18)C10—C151.415 (4)
Cu1—N22.231 (3)C10—C111.422 (4)
N1—C51.292 (3)C11—C121.400 (4)
N1—C21.457 (3)C12—C131.376 (4)
N2—C161.338 (4)C12—H270.9300
N2—C201.345 (4)C13—C141.390 (5)
N3—C211.337 (4)C13—H260.9300
N3—C251.352 (4)C14—C151.363 (5)
O4—C71.295 (4)C14—H250.9300
O2—C11.240 (3)C15—H150.9300
O1—C11.269 (3)C16—C171.384 (5)
O3—C31.415 (3)C16—H170.9300
O3—H30.8200C17—C181.376 (7)
C1—C21.533 (4)C17—H220.9300
C2—C31.548 (4)C18—C191.362 (7)
C2—H280.9800C18—H360.9300
C3—C41.522 (4)C19—C201.397 (5)
C3—H290.9800C19—H370.9300
C4—H21A0.9600C20—C211.469 (5)
C4—H21B0.9600C21—C221.390 (5)
C4—H21C0.9600C22—C231.366 (6)
C5—C61.428 (3)C22—H330.9300
C5—H110.9300C23—C241.352 (6)
C6—C71.417 (4)C23—H230.9300
C6—C111.452 (3)C24—C251.384 (5)
C7—C81.425 (4)C24—H240.9300
C8—C91.346 (5)C25—H320.9300
O4—Cu1—N192.62 (8)C9—C8—H18118.8
O4—Cu1—N391.77 (9)C7—C8—H18118.8
N1—Cu1—N3174.65 (9)C8—C9—C10121.6 (3)
O4—Cu1—O1147.49 (9)C8—C9—H19119.2
N1—Cu1—O182.08 (8)C10—C9—H19119.2
N3—Cu1—O192.57 (9)C15—C10—C9121.3 (3)
O4—Cu1—N2109.51 (10)C15—C10—C11119.8 (3)
N1—Cu1—N2104.07 (9)C9—C10—C11118.9 (3)
N3—Cu1—N277.29 (10)C12—C11—C10117.3 (3)
O1—Cu1—N2102.88 (9)C12—C11—C6123.7 (2)
C5—N1—C2119.8 (2)C10—C11—C6118.9 (3)
C5—N1—Cu1126.40 (17)C13—C12—C11121.5 (3)
C2—N1—Cu1113.27 (15)C13—C12—H27119.3
C16—N2—C20119.4 (3)C11—C12—H27119.3
C16—N2—Cu1129.6 (2)C12—C13—C14121.0 (3)
C20—N2—Cu1110.3 (2)C12—C13—H26119.5
C21—N3—C25119.3 (3)C14—C13—H26119.5
C21—N3—Cu1119.1 (2)C15—C14—C13119.4 (3)
C25—N3—Cu1121.6 (2)C15—C14—H25120.3
C7—O4—Cu1127.02 (18)C13—C14—H25120.3
C1—O1—Cu1114.08 (16)C14—C15—C10120.9 (3)
C3—O3—H3109.5C14—C15—H15119.5
O2—C1—O1124.4 (2)C10—C15—H15119.5
O2—C1—C2119.6 (2)N2—C16—C17121.3 (4)
O1—C1—C2116.1 (2)N2—C16—H17119.3
N1—C2—C1106.54 (19)C17—C16—H17119.3
N1—C2—C3111.06 (19)C18—C17—C16119.4 (5)
C1—C2—C3108.7 (2)C18—C17—H22120.3
N1—C2—H28110.1C16—C17—H22120.3
C1—C2—H28110.1C19—C18—C17119.5 (4)
C3—C2—H28110.1C19—C18—H36120.3
O3—C3—C4111.7 (2)C17—C18—H36120.3
O3—C3—C2110.6 (2)C18—C19—C20119.1 (4)
C4—C3—C2112.0 (2)C18—C19—H37120.4
O3—C3—H29107.4C20—C19—H37120.4
C4—C3—H29107.4N2—C20—C19121.1 (4)
C2—C3—H29107.4N2—C20—C21116.2 (3)
C3—C4—H21A109.5C19—C20—C21122.7 (4)
C3—C4—H21B109.5N3—C21—C22120.3 (4)
H21A—C4—H21B109.5N3—C21—C20115.7 (3)
C3—C4—H21C109.5C22—C21—C20123.9 (3)
H21A—C4—H21C109.5C23—C22—C21119.3 (4)
H21B—C4—H21C109.5C23—C22—H33120.4
N1—C5—C6126.0 (2)C21—C22—H33120.4
N1—C5—H11117.0C24—C23—C22121.2 (3)
C6—C5—H11117.0C24—C23—H23119.4
C7—C6—C5121.3 (2)C22—C23—H23119.4
C7—C6—C11120.2 (2)C23—C24—C25117.5 (4)
C5—C6—C11118.3 (2)C23—C24—H24121.3
O4—C7—C6125.5 (2)C25—C24—H24121.3
O4—C7—C8116.7 (3)N3—C25—C24122.4 (4)
C6—C7—C8117.8 (3)N3—C25—H32118.8
C9—C8—C7122.4 (3)C24—C25—H32118.8
C1—C2—C3—C471.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.992.808 (3)178
C5—H11···O2i0.932.493.311 (3)147
C12—H27···O2i0.932.503.431 (4)174
C14—H25···O3ii0.932.523.445 (4)177

Symmetry codes: (i) x−1/2, −y+5/2, −z+2; (ii) −x−1/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2129).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Garnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Kalagouda, B. G., Manjula, S. P., Ramesh, S. V., Rashmi, V. S. & Siddappa, A. P. (2006). Transition Met. Chem.31, 580–585.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, R.-M., Hao, C.-J., Wang, Y.-P. & Li, S.-B. (1999). J. Mol. Catal. A: Chem.147, 173–178.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography