PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o862.
Published online 2008 April 16. doi:  10.1107/S1600536808010131
PMCID: PMC2961287

2-[(E)-Benzyl­imino­meth­yl]-4-methyl­phenol

Abstract

In the title Schiff base, C15H15NO, the benzene rings form a dihedral angle of 74.91 (1)°. There is a strong intra­molecular O—H(...)N hydrogen bond.

Related literature

For literature on photochromism and thermochromism of Schiff bases in the solid state, see: Cohen et al. (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o862-scheme1.jpg

Experimental

Crystal data

  • C15H15NO
  • M r = 225.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o862-efi1.jpg
  • a = 14.248 (3) Å
  • b = 6.1724 (2) Å
  • c = 14.529 (3) Å
  • β = 102.79 (3)°
  • V = 1246.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 (2) K
  • 0.54 × 0.30 × 0.25 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.970, T max = 0.986
  • 11598 measured reflections
  • 2826 independent reflections
  • 1636 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.146
  • S = 1.03
  • 2826 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalStructure; software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010131/gk2138sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010131/gk2138Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Talent Fund of Ningbo University (grant No. 2006668).

supplementary crystallographic information

Comment

Compounds presenting photochromism, a reversible color change brought about in at least one direction by the action of electromagnetic radiation, attract considerable attention from various fields of chemistry, physics and material science as potential candidates for practical applications. For a long time, the Schiff bases of salicylaldehyde with aromatic amines (anils or N-salicylideneaniline derivatives) are recognized as such compounds, which undergo keto-enol tautomerism and present common features in their structures and reaction mechanisms (Cohen et al., 1964). The tautomerism involves proton transfer from the hydroxylic oxygen to the imino nitrogen atom that occurs intramolecularly via a six-membered ring, with the keto species showing bathochromically shifted spectra. Continuing our studies on the relation between the Schiff base geometry in the crystalline state and photochromism and/or thermochromism, we report here the crystal structure of 2-[(E)-(benzylimino)methyl]-4-methylphenol (I).

The molecular structure of (I) is illustrated in Fig. 1. Compound (I) is a typical Schiff base derived from salicylaldehyde with the C8—N1 bond length (Table 1) indicating double-bond character. The title molecule is not planar. The dihedral angle between the phenyl ring and salicylaldimine group is 74.91 (1)°. There is a strong intramolecular hydrogen bond between the phenolic group and the imine N atom (Table 1).

Experimental

1-Phenylmethanamine (0.02 mol, 2.14 g) and 5-methylsalicylaldehyde (0.02 mol, 2.76 g) were dissolved in ethanol and the solution was refluxed for 3 h. After evaporation, a crude product was recrystallized twice from ethanol to give a pure yellow product. Yield: 87.3%. Calcd. for C15H15NO: C, 79.97; H, 6.71; N, 6.22; Found: C, 79.53; H, 6.78; N, 6.02%.

Refinement

All H atoms were located from difference Fourier syntheses. H atoms from the C—H groups and O—H group were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93–0.97%A; O—H = 0.82 Å). and Uiso(H) values equal to 1.2 Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C15H15NOF000 = 480
Mr = 225.28Dx = 1.201 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6530 reflections
a = 14.248 (3) Åθ = 1.0–27.5º
b = 6.1724 (2) ŵ = 0.08 mm1
c = 14.529 (3) ÅT = 295 (2) K
β = 102.79 (3)ºBlock, yellow
V = 1246.0 (4) Å30.54 × 0.30 × 0.25 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer2826 independent reflections
Radiation source: fine-focus sealed tube1636 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
Detector resolution: 0 pixels mm-1θmax = 27.5º
T = 295(2) Kθmin = 3.5º
ω scansh = −18→18
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −7→7
Tmin = 0.970, Tmax = 0.986l = −18→18
11598 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.146  w = 1/[σ2(Fo2) + (0.0657P)2 + 0.0924P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2826 reflectionsΔρmax = 0.15 e Å3
155 parametersΔρmin = −0.14 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.60971 (8)−0.30589 (18)0.62915 (9)0.0799 (4)
H1A0.6539−0.23260.65950.120*
N10.69322 (11)0.0362 (3)0.71735 (10)0.0756 (4)
C10.90441 (17)0.3943 (4)0.58653 (16)0.0962 (7)
H1C0.90180.51850.54980.115*
C20.96894 (15)0.2373 (4)0.58075 (16)0.0989 (7)
H2A1.01040.25360.54000.119*
C30.97336 (16)0.0579 (4)0.63369 (17)0.0958 (7)
H3A1.0182−0.04940.62990.115*
C40.84281 (13)0.3717 (3)0.64613 (14)0.0820 (5)
H4A0.79880.48090.64950.098*
C50.91196 (15)0.0324 (3)0.69338 (14)0.0833 (6)
H5A0.9154−0.09310.72940.100*
C60.84528 (12)0.1892 (3)0.70109 (12)0.0672 (5)
C70.77651 (14)0.1640 (4)0.76503 (14)0.0978 (7)
H7A0.80850.09190.82280.117*
H7B0.75540.30550.78130.117*
C80.61136 (13)0.1263 (3)0.70132 (11)0.0661 (5)
H8A0.60680.26720.72250.079*
C90.52454 (11)0.0188 (2)0.65129 (10)0.0535 (4)
C100.43697 (12)0.1266 (2)0.63498 (11)0.0616 (4)
H10A0.43510.26560.65920.074*
C110.25972 (15)0.1615 (4)0.56557 (16)0.1024 (7)
H12A0.27260.31310.56010.154*
H12B0.22780.13930.61650.154*
H12C0.21920.11090.50770.154*
C120.35323 (12)0.0375 (3)0.58492 (11)0.0657 (4)
C130.35819 (13)−0.1710 (3)0.55086 (11)0.0694 (5)
H14A0.3023−0.23570.51670.083*
C140.44260 (13)−0.2846 (3)0.56589 (12)0.0671 (5)
H15A0.4433−0.42450.54230.081*
C150.52682 (11)−0.1926 (2)0.61595 (11)0.0572 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0798 (8)0.0663 (7)0.1004 (10)0.0110 (6)0.0346 (7)−0.0035 (6)
N10.0683 (10)0.0952 (11)0.0659 (9)−0.0153 (8)0.0206 (8)−0.0023 (8)
C10.0927 (15)0.0946 (15)0.1008 (16)−0.0124 (12)0.0202 (13)0.0275 (12)
C20.0763 (14)0.135 (2)0.0896 (15)−0.0130 (14)0.0268 (12)0.0031 (15)
C30.0789 (14)0.1082 (17)0.0998 (16)0.0156 (12)0.0189 (12)−0.0135 (14)
C40.0696 (12)0.0780 (12)0.0946 (14)0.0086 (9)0.0096 (10)0.0031 (11)
C50.0920 (14)0.0717 (11)0.0777 (13)−0.0020 (11)0.0007 (11)0.0079 (9)
C60.0584 (10)0.0795 (11)0.0601 (10)−0.0123 (9)0.0053 (8)−0.0041 (8)
C70.0822 (13)0.143 (2)0.0699 (12)−0.0370 (13)0.0208 (10)−0.0184 (12)
C80.0832 (12)0.0665 (10)0.0539 (9)−0.0141 (9)0.0265 (9)−0.0049 (8)
C90.0675 (10)0.0496 (8)0.0470 (8)−0.0047 (7)0.0206 (7)0.0014 (6)
C100.0832 (12)0.0492 (8)0.0563 (9)0.0028 (8)0.0239 (9)0.0022 (7)
C110.0860 (14)0.1106 (17)0.1066 (17)0.0238 (13)0.0126 (12)0.0172 (13)
C120.0722 (11)0.0711 (10)0.0555 (9)0.0062 (9)0.0179 (8)0.0090 (8)
C130.0746 (12)0.0814 (12)0.0543 (10)−0.0160 (10)0.0184 (8)−0.0064 (8)
C140.0848 (12)0.0565 (9)0.0675 (10)−0.0122 (9)0.0331 (9)−0.0132 (8)
C150.0705 (10)0.0517 (8)0.0566 (9)0.0021 (8)0.0297 (8)0.0034 (7)

Geometric parameters (Å, °)

O1—C151.3493 (18)C7—H7B0.9700
O1—H1A0.8200C8—C91.449 (2)
N1—C81.266 (2)C8—H8A0.9300
N1—C71.465 (2)C9—C101.387 (2)
C1—C21.351 (3)C9—C151.405 (2)
C1—C41.370 (3)C10—C121.368 (2)
C1—H1C0.9300C10—H10A0.9300
C2—C31.342 (3)C11—C121.508 (2)
C2—H2A0.9300C11—H12A0.9600
C3—C51.370 (3)C11—H12B0.9600
C3—H3A0.9300C11—H12C0.9600
C4—C61.376 (3)C12—C131.386 (2)
C4—H4A0.9300C13—C141.367 (2)
C5—C61.378 (3)C13—H14A0.9300
C5—H5A0.9300C14—C151.380 (2)
C6—C71.500 (2)C14—H15A0.9300
C7—H7A0.9700
C15—O1—H1A109.5N1—C8—H8A118.6
C8—N1—C7117.85 (18)C9—C8—H8A118.6
C2—C1—C4120.4 (2)C10—C9—C15118.39 (15)
C2—C1—H1C119.8C10—C9—C8120.12 (14)
C4—C1—H1C119.8C15—C9—C8121.47 (15)
C3—C2—C1120.2 (2)C12—C10—C9122.94 (15)
C3—C2—H2A119.9C12—C10—H10A118.5
C1—C2—H2A119.9C9—C10—H10A118.5
C2—C3—C5120.1 (2)C12—C11—H12A109.5
C2—C3—H3A119.9C12—C11—H12B109.5
C5—C3—H3A119.9H12A—C11—H12B109.5
C1—C4—C6120.83 (19)C12—C11—H12C109.5
C1—C4—H4A119.6H12A—C11—H12C109.5
C6—C4—H4A119.6H12B—C11—H12C109.5
C3—C5—C6121.27 (19)C10—C12—C13117.10 (16)
C3—C5—H5A119.4C10—C12—C11121.73 (17)
C6—C5—H5A119.4C13—C12—C11121.15 (18)
C4—C6—C5117.19 (17)C14—C13—C12122.12 (16)
C4—C6—C7120.53 (18)C14—C13—H14A118.9
C5—C6—C7122.28 (18)C12—C13—H14A118.9
N1—C7—C6109.57 (15)C13—C14—C15120.28 (15)
N1—C7—H7A109.8C13—C14—H15A119.9
C6—C7—H7A109.8C15—C14—H15A119.9
N1—C7—H7B109.8O1—C15—C14119.53 (14)
C6—C7—H7B109.8O1—C15—C9121.32 (15)
H7A—C7—H7B108.2C14—C15—C9119.15 (15)
N1—C8—C9122.71 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.892.616 (2)147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2138).

References

  • Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2043.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography