PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m698–m699.
Published online 2008 April 23. doi:  10.1107/S160053680801088X
PMCID: PMC2961283

Tetrakis(thiourea-κS)palladium(II) dithio­cyanate

Abstract

The title compound, [Pd(CH4N2S)4](SCN)2, consists of complex [Pd(TU)4]2+ [TU = thio­urea, SC(NH2)2] cations and thio­cyanate counter-anions. The PdII cation is situated on an inversion centre and exhibits an almost square-planar coordination by the S atoms of the TU ligands. The complex cations are connected through the thio­cyanate ions via N—H(...)N [2.922 (3)–3.056 (3) Å] and N—H(...)S [3.369 (2)–3.645 (2) Å] hydrogen bonds.

Related literature

For the coordination chemistry of thio­nes and thio­nates, and for biomolecules possessing thio­amido binding sites, see: Akrivos (2001 [triangle]); Raper (1996 [triangle]); Cusumano et al. (2005 [triangle]). For other structures listed in the Cambridge Structural Database (Allen, 2002 [triangle]) that contain transition metals and thio­urea ligands, see: Bott et al. (1998 [triangle]); Dupa & Krebs (1973 [triangle]); Gale et al. (2006 [triangle]); Hunt et al. (1979 [triangle]); Taylor et al. (1974 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m698-scheme1.jpg

Experimental

Crystal data

  • [Pd(CH4N2S)4](SCN)2
  • M r = 527.05
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m698-efi1.jpg
  • a = 8.136 (3) Å
  • b = 12.966 (5) Å
  • c = 8.810 (3) Å
  • β = 91.12 (5)°
  • V = 929.3 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.69 mm−1
  • T = 123 (2) K
  • 0.30 × 0.25 × 0.22 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer
  • Absorption correction: integration (NUMABS; Higashi, 1999 [triangle]) T min = 0.632, T max = 0.708
  • 7301 measured reflections
  • 2117 independent reflections
  • 2040 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.043
  • S = 1.35
  • 2117 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001 [triangle]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801088X/wm2176sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801088X/wm2176Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

M. K. Rauf is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme.

supplementary crystallographic information

Comment

Thiourea (TU), SC(NH2)2, is a simple ambidentate ligand capable of binding to transition metals via the sulfur or the nitrogen atoms. Complex formation with such ligands provides model systems for the interaction of naturally occurring biomolecules possessing thioamido binding sites (Akrivos, 2001; Raper, 1996; Cusumano et al., 2005). The ability of TU to form stable adducts with a variety of transition metals, e.g. Cu, Ag, Au and Pt, is well established. The crystal structures of several such complexes have been determined (Bott et al., 1998; Gale et al., 2006). These studies demonstrate that TU can act both as a terminal ligand in monomeric complexes (Hunt et al., 1979), or as a bridging ligand in polymeric complexes (Taylor et al., 1974). In order to investigate other transition metal complexes of thiourea, we report here the crystal structure of a monomeric complex, viz. [Pd(SC(NH2)2)4](SCN)2, (I).

The crystal structure of (I) is composed of complex [Pd(TU)4]+2 cations and thiocyanate counter anions. The Pd2+ ion is situated on an inversion centre and, as expected for a d8 system, has an almost square planar environment with cis angles (S—Pd—S) ranging from 87.87 (2) to 92.13 (2)°, and trans angles (S—Pd—S) of 180.0°. The TU ligands are coordinated to PdII at almost equal distances. The Pd—S bond lengths of 2.3302 (8) and 2.3448 (7) Å (Table 1) are comparable to those of similar compounds reported in the literature (Gale et al., 2006). In the cationic complex, TU ligands behave as S–donors and all four ligands are binding in a terminal mode. Therefore no bridging of metal centers are found as it is observed in some other metal-thiourea compounds, for example, [Cu4(TU)7(SO4)2]NO3 (Bott et al., 1998) and [Ag2(TU)6](ClO4)2 (Dupa & Krebs, 1973). The C—S and C—N bond lengths of 1.723 (2) Å and 1.326 (3) Å, respectively, agree with those of coordinated thiourea molecules reported in the Cambridge Crystallographic database (Allen, 2002). In the crystal structure, the building units are connected via hydrogen bonds of the type N—H···N [2.922 (3)–3.058 (3) Å] and N—H···S [3.370 (2)–3.646 (2) Å] (see Table 2).

Experimental

Crystals of (I) were obtained by adding 4 equivalents of thiourea in 15 ml methanol to a solution of K2[PdCl2] (0.326 g) in 15 ml of water and stirring for one h. The resulting orange solution was kept after filtration at room temperature for three d. Orange crystals of (I) were obtained on slow evaporation. The counter anion SCN- has apparently been introduced due to impurities (presumably KSCN), that were present in thiourea.

Refinement

The H atoms attached to the N atoms were placed in idealized positions and refined with a N—H distance of 0.88 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
Molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level. Unlabelled atoms and atoms labelled by superscript i) are related by the symmetry operator i) 1-x, y, z.

Crystal data

[Pd(CH4N2S)4](SCN)2F000 = 528
Mr = 527.05Dx = 1.884 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3103 reflections
a = 8.136 (3) Åθ = 3.4–27.5º
b = 12.966 (5) ŵ = 1.69 mm1
c = 8.810 (3) ÅT = 123 (2) K
β = 91.12 (5)ºPrism, orange
V = 929.3 (6) Å30.30 × 0.25 × 0.22 mm
Z = 2

Data collection

Rigaku/MSC Mercury CCD diffractometer2117 independent reflections
Radiation source: fine-focus sealed tube2040 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 123(2) Kθmax = 27.5º
ω scansθmin = 3.9º
Absorption correction: integration(NUMABS; Higashi, 1999)h = −8→10
Tmin = 0.632, Tmax = 0.708k = −16→13
7301 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.043  w = 1/[σ2(Fo2) + 0.6382P] where P = (Fo2 + 2Fc2)/3
S = 1.35(Δ/σ)max = 0.001
2117 reflectionsΔρmax = 0.66 e Å3
106 parametersΔρmin = −0.48 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd10.00000.50000.50000.00900 (6)
S1−0.19061 (6)0.37251 (3)0.56476 (5)0.01265 (10)
C1−0.1354 (2)0.26304 (14)0.4664 (2)0.0140 (4)
N1−0.0189 (2)0.26297 (13)0.36425 (19)0.0197 (4)
H1A0.00680.20540.31750.024*
H1B0.03320.32050.34290.024*
N2−0.2134 (2)0.17612 (13)0.49809 (19)0.0199 (4)
H2A−0.18740.11870.45110.024*
H2B−0.29110.17590.56610.024*
S20.13159 (6)0.47003 (4)0.73312 (5)0.01300 (10)
C20.3204 (2)0.41505 (14)0.7012 (2)0.0141 (4)
N30.3774 (2)0.39827 (14)0.56415 (18)0.0201 (4)
H3A0.47430.36930.55340.024*
H3B0.31840.41600.48350.024*
N40.4105 (2)0.38793 (14)0.82155 (19)0.0219 (4)
H4A0.50730.35910.80960.026*
H4B0.37360.39880.91340.026*
S30.22933 (7)0.42269 (4)0.17265 (6)0.02044 (12)
C30.4076 (3)0.36611 (15)0.2055 (2)0.0186 (4)
N50.5334 (2)0.32525 (15)0.2287 (2)0.0260 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.00878 (10)0.00771 (9)0.01049 (9)0.00000 (7)−0.00061 (7)0.00047 (7)
S10.0121 (2)0.0103 (2)0.0156 (2)−0.00127 (17)0.00147 (17)−0.00054 (16)
C10.0152 (10)0.0128 (9)0.0137 (9)−0.0004 (7)−0.0027 (7)0.0001 (7)
N10.0228 (10)0.0129 (8)0.0238 (9)−0.0030 (7)0.0077 (7)−0.0057 (6)
N20.0248 (10)0.0115 (8)0.0236 (9)−0.0039 (7)0.0073 (7)−0.0027 (7)
S20.0111 (2)0.0163 (2)0.0115 (2)0.00134 (17)−0.00052 (16)0.00123 (16)
C20.0126 (9)0.0124 (9)0.0172 (9)−0.0010 (7)−0.0007 (7)0.0011 (7)
N30.0166 (9)0.0275 (9)0.0162 (8)0.0096 (7)0.0005 (7)0.0019 (7)
N40.0170 (9)0.0309 (10)0.0176 (8)0.0108 (8)−0.0040 (7)0.0005 (7)
S30.0193 (3)0.0202 (2)0.0220 (2)0.0026 (2)0.0054 (2)0.00404 (19)
C30.0235 (12)0.0183 (10)0.0144 (9)−0.0049 (8)0.0061 (8)−0.0029 (7)
N50.0232 (11)0.0256 (9)0.0292 (10)0.0018 (8)0.0031 (8)−0.0007 (8)

Geometric parameters (Å, °)

Pd1—S22.3302 (11)N2—H2B0.8800
Pd1—S2i2.3302 (11)S2—C21.721 (2)
Pd1—S12.3448 (8)C2—N31.320 (3)
Pd1—S1i2.3448 (8)C2—N41.325 (3)
S1—C11.727 (2)N3—H3A0.8800
C1—N11.320 (3)N3—H3B0.8800
C1—N21.326 (3)N4—H4A0.8800
N1—H1A0.8800N4—H4B0.8800
N1—H1B0.8800S3—C31.646 (2)
N2—H2A0.8800C3—N51.167 (3)
S2—Pd1—S2i180.0C1—N2—H2B120.0
S2—Pd1—S187.86 (3)H2A—N2—H2B120.0
S2i—Pd1—S192.14 (3)C2—S2—Pd1108.72 (7)
S2—Pd1—S1i92.14 (3)N3—C2—N4119.29 (18)
S2i—Pd1—S1i87.86 (3)N3—C2—S2123.27 (15)
S1—Pd1—S1i180.0N4—C2—S2117.44 (15)
C1—S1—Pd1106.11 (7)C2—N3—H3A120.0
N1—C1—N2119.74 (17)C2—N3—H3B120.0
N1—C1—S1122.68 (15)H3A—N3—H3B120.0
N2—C1—S1117.57 (15)C2—N4—H4A120.0
C1—N1—H1A120.0C2—N4—H4B120.0
C1—N1—H1B120.0H4A—N4—H4B120.0
H1A—N1—H1B120.0N5—C3—S3179.5 (2)
C1—N2—H2A120.0
S2—Pd1—S1—C1−101.78 (7)S1—Pd1—S2—C2112.12 (7)
S2i—Pd1—S1—C178.22 (7)S1i—Pd1—S2—C2−67.88 (7)
Pd1—S1—C1—N1−6.95 (19)Pd1—S2—C2—N32.44 (18)
Pd1—S1—C1—N2172.15 (14)Pd1—S2—C2—N4−176.95 (14)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···S30.882.583.369 (2)150
N1—H1A···S2ii0.882.603.466 (2)166
N2—H2A···S3iii0.882.783.615 (2)158
N2—H2B···N5iv0.882.042.922 (3)178
N3—H3B···S30.882.823.645 (2)157
N3—H3A···S1v0.882.733.531 (2)153
N4—H4B···S3vi0.882.613.482 (2)173
N4—H4A···N5vii0.882.503.056 (3)121

Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) −x, y−1/2, −z+1/2; (iv) x−1, −y+1/2, z+1/2; (v) x+1, y, z; (vi) x, y, z+1; (vii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2176).

References

  • Akrivos, P. D. (2001). Coord. Chem. Rev.213, 181–210.
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bott, R. C., Bowmaker, G. A., Davis, C. A., Hope, G. A. & Jones, B. E. (1998). Inorg. Chem.37, 651–657.
  • Cusumano, M., Di Pietro, M. L., Giannetto, A. & Vainiglia, P. A. (2005). J. Inorg. Biochem.99, 560–565. [PubMed]
  • Dupa, M. R. & Krebs, B. (1973). Inorg. Chim. Acta, 7, 271–276.
  • Gale, P. A., Light, M. E. & Quesada, R. (2006). CrystEngComm, 8, 178–188.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Hunt, G. W., Terry, N. W. & Amma, E. L. (1979). Acta Cryst. B35, 1235–1236.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Molecular Structure Corporation & Rigaku (2001). CrystalClear MSC, The Woodlands, Texas, USA.
  • Molecular Structure Corporation & Rigaku (2004). TEXSAN MSC, The Woodlands, Texas, USA.
  • Raper, E. S. (1996). Coord. Chem. Rev.153, 199–255.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Taylor, F. Jr, Weiniger, M. S. & Amma, E. L. (1974). Inorg. Chem.13, 2835–2842.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography