PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o833.
Published online 2008 April 10. doi:  10.1107/S1600536808009513
PMCID: PMC2961265

2-Methyl-N-[(3-methyl-2-pyrid­yl)carbamothio­yl]benzamide

Abstract

In the title compound, C15H15N3OS, the thio­urea group is stabilized by an intra­molecular hydrogen bond between the carbonyl O atom and the thio­amide group. A C—H(...)N intramolecular hydrogen bond is also present. Mol­ecules are linked by inter­molecular N—H(...)O and C—H(...)S hydrogen bonds.

Related literature

For the crystal structure of N-(3-iodo­phen­yl)-N′-(2-methyl­benzo­yl)thio­urea, see: Yusof et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o833-scheme1.jpg

Experimental

Crystal data

  • C15H15N3OS
  • M r = 285.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o833-efi1.jpg
  • a = 7.955 (3) Å
  • b = 7.811 (3) Å
  • c = 23.414 (8) Å
  • β = 90.827 (6)°
  • V = 1454.6 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 298 (2) K
  • 0.49 × 0.46 × 0.17 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.899, T max = 0.963
  • 7524 measured reflections
  • 2710 independent reflections
  • 2099 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.112
  • S = 1.02
  • 2710 reflections
  • 191 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009513/sg2229sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009513/sg2229Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Higher Education of Malaysia for Fundamental Research Grants UKM-ST-01-FRGS-0003-2006 and UMT-FRGS-59001, and Universiti Kebangsaan Malaysia and HEJ Research Institute of Chemistry, University of Karachi, for research facilities.

supplementary crystallographic information

Comment

The title compound, (I), is analogous to N-(3-iodophenyl)-N'-(2-methylbenzoyl) thiourea (II), (Yusof et al., 2007) except that the iodophenyl group is replaced by the 3-methylpyridine group (Fig.1). The bond lengths and angles are in normal range (Allen et al., 1987). The central thiourea moiety, S1/N1/N2/C9, pyridine, N3/(C10—C14), and benzene,(C1—C6) rings are each planar with maximum deviation of 0.033 (2)Å for N2 atom from the least square plane. The central thiourea moiety makes dihedral angle with the pyridine and benzene rings of 64.58 (8) and 62.03 (8)° respectively. The dihedral angle between the pyridine and benzene rings (4.03 (10)°) is smaller compared to that in (II) of 31.88 (9)°. The molecule maintains the trans-cis geometry of the thiourea moiety which is stabilized by the intrahydrogen bond between the carbonyl oxygen atom O1 and the thioamide hydrogen atom, H15A. In the crystal structure, the molecules are linked by the N2—H2···O1 and C13—H13···S1 intermolecular hydrogen bonds (symmtery codes as in Table 2).

Experimental

The mixture of 2-methylbenzoyl chloride (9.720 g, 0.025mole) with the equimolar amount of ammonium thiocyanate (1.903 g, 0.025 mol) and 2-amino-3-methyl pyridine,(2.703 g, 0.025 mol) in 40 ml dry acetone was refluxed with stirring for 4 h. The solution was filtered and left to evaporate at room temperature. The colourless crystals obtained after a few days, was found suitable for X-ray investigations. The yield was 85% and the melting point is 412.3–413.8 K.

Refinement

H atoms on the C of methyl, phenyl and pyridine were positioned geomatrically with C—H=0.96 Å and 0.93 Å respectively and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(CH) and 1.5Ueq(CH3). The hydrogen atoms attached to the amino nitrogen atoms were located from the difference Fourier map and refined isotropically.

Figures

Fig. 1.
The molecular Structure of (1) with displacement ellipsoids drawn at 50% probability level.The dashed lines indicates the intramolecular hydrogen bonds.
Fig. 2.
A packing diagram of (1). Hydrogen bonds are shown by dashed lines.

Crystal data

C15H15N3OSF000 = 600
Mr = 285.36Dx = 1.303 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2292 reflections
a = 7.955 (3) Åθ = 1.7–25.5º
b = 7.811 (3) ŵ = 0.22 mm1
c = 23.414 (8) ÅT = 298 (2) K
β = 90.827 (6)ºBlock, colourless
V = 1454.6 (9) Å30.49 × 0.46 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer2710 independent reflections
Radiation source: fine-focus sealed tube2099 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
Detector resolution: 83.66 pixels mm-1θmax = 25.5º
T = 298(2) Kθmin = 1.7º
ω scansh = −9→9
Absorption correction: multi-scan(SADABS; Bruker, 2000)k = −9→9
Tmin = 0.899, Tmax = 0.963l = −16→28
7524 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112  w = 1/[σ2(Fo2) + (0.0591P)2 + 0.3029P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2710 reflectionsΔρmax = 0.24 e Å3
191 parametersΔρmin = −0.13 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.34243 (7)0.20705 (8)0.17685 (2)0.0662 (2)
O10.40058 (17)0.34898 (19)−0.00872 (5)0.0599 (4)
N10.26335 (19)0.2529 (2)0.06915 (6)0.0485 (4)
H10.1847 (19)0.183 (2)0.0784 (8)0.056 (6)*
N20.49690 (18)0.4025 (2)0.10075 (6)0.0460 (4)
H20.513 (2)0.429 (3)0.0656 (9)0.057 (6)*
N30.77881 (19)0.3995 (2)0.12320 (7)0.0579 (4)
C10.1548 (2)0.1298 (2)−0.07366 (8)0.0497 (5)
C20.0123 (3)0.0935 (3)−0.10668 (9)0.0641 (6)
H2A0.02380.0305−0.14010.077*
C3−0.1439 (3)0.1477 (3)−0.09150 (10)0.0707 (7)
H3−0.23580.1239−0.11520.085*
C4−0.1669 (3)0.2364 (3)−0.04197 (11)0.0675 (6)
H4−0.27370.2720−0.03160.081*
C5−0.0286 (2)0.2727 (3)−0.00736 (9)0.0537 (5)
H5−0.04300.33030.02700.064*
C60.1310 (2)0.2234 (2)−0.02376 (7)0.0434 (4)
C70.3230 (3)0.0627 (3)−0.09092 (10)0.0759 (7)
H7A0.3091−0.0141−0.12260.114*
H7B0.37420.0028−0.05940.114*
H7C0.39360.1565−0.10180.114*
C80.2781 (2)0.2805 (2)0.01149 (7)0.0433 (4)
C90.3749 (2)0.2940 (2)0.11353 (7)0.0457 (4)
C100.6291 (2)0.4528 (2)0.13916 (7)0.0437 (4)
C110.6000 (3)0.5570 (3)0.18580 (8)0.0554 (5)
C120.7424 (3)0.5988 (3)0.21814 (9)0.0688 (6)
H120.73150.66670.25050.083*
C130.8968 (3)0.5421 (3)0.20313 (10)0.0745 (7)
H130.99140.56830.22520.089*
C140.9096 (3)0.4468 (3)0.15529 (10)0.0732 (7)
H141.01620.41230.14420.088*
C150.4302 (3)0.6260 (4)0.20004 (11)0.0852 (8)
H15A0.35810.62010.16690.128*
H15B0.44080.74300.21210.128*
H15C0.38290.55930.23030.128*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0669 (4)0.0892 (4)0.0423 (3)−0.0180 (3)−0.0071 (2)0.0199 (3)
O10.0565 (8)0.0822 (10)0.0411 (7)−0.0295 (7)0.0001 (6)0.0024 (7)
N10.0422 (9)0.0642 (10)0.0390 (8)−0.0158 (7)−0.0032 (6)0.0087 (7)
N20.0425 (8)0.0628 (10)0.0325 (8)−0.0091 (7)−0.0020 (6)0.0037 (7)
N30.0422 (9)0.0730 (11)0.0585 (10)−0.0011 (8)−0.0012 (7)−0.0153 (8)
C10.0598 (12)0.0452 (10)0.0441 (10)−0.0082 (9)−0.0028 (8)0.0020 (8)
C20.0840 (16)0.0569 (13)0.0508 (11)−0.0154 (12)−0.0169 (11)−0.0021 (10)
C30.0697 (15)0.0612 (13)0.0801 (16)−0.0157 (11)−0.0364 (13)0.0138 (12)
C40.0452 (12)0.0651 (14)0.0919 (17)−0.0024 (10)−0.0117 (11)0.0112 (13)
C50.0485 (12)0.0559 (12)0.0567 (12)−0.0043 (9)−0.0023 (9)0.0011 (9)
C60.0455 (10)0.0432 (9)0.0413 (9)−0.0070 (8)−0.0044 (7)0.0061 (8)
C70.0810 (16)0.0757 (16)0.0713 (15)0.0002 (13)0.0119 (12)−0.0179 (12)
C80.0434 (10)0.0456 (10)0.0408 (9)−0.0068 (8)−0.0005 (7)0.0018 (8)
C90.0387 (10)0.0565 (11)0.0418 (10)−0.0005 (8)−0.0014 (7)0.0026 (8)
C100.0435 (10)0.0508 (10)0.0367 (9)−0.0025 (8)−0.0028 (7)0.0003 (8)
C110.0634 (12)0.0592 (12)0.0435 (10)0.0039 (10)0.0008 (9)−0.0035 (9)
C120.0903 (17)0.0698 (15)0.0459 (11)−0.0074 (13)−0.0106 (11)−0.0148 (10)
C130.0637 (15)0.0915 (18)0.0675 (14)−0.0146 (13)−0.0233 (11)−0.0064 (13)
C140.0435 (12)0.0973 (18)0.0785 (15)−0.0010 (11)−0.0096 (10)−0.0162 (13)
C150.0838 (17)0.0948 (18)0.0774 (16)0.0215 (14)0.0110 (13)−0.0214 (14)

Geometric parameters (Å, °)

S1—C91.6545 (18)C4—H40.9300
O1—C81.214 (2)C5—C61.386 (3)
N1—C81.374 (2)C5—H50.9300
N1—C91.394 (2)C6—C81.490 (2)
N1—H10.860 (9)C7—H7A0.9600
N2—C91.326 (2)C7—H7B0.9600
N2—C101.429 (2)C7—H7C0.9600
N2—H20.86 (2)C10—C111.384 (3)
N3—C101.321 (2)C11—C121.392 (3)
N3—C141.327 (3)C11—C151.497 (3)
C1—C21.392 (3)C12—C131.357 (3)
C1—C61.394 (3)C12—H120.9300
C1—C71.498 (3)C13—C141.350 (3)
C2—C31.364 (3)C13—H130.9300
C2—H2A0.9300C14—H140.9300
C3—C41.366 (3)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.386 (3)C15—H15C0.9600
C8—N1—C9129.35 (15)H7A—C7—H7C109.5
C8—N1—H1114.8 (13)H7B—C7—H7C109.5
C9—N1—H1114.6 (13)O1—C8—N1122.17 (16)
C9—N2—C10124.63 (15)O1—C8—C6122.97 (16)
C9—N2—H2119.5 (13)N1—C8—C6114.85 (14)
C10—N2—H2114.5 (13)N2—C9—N1116.05 (15)
C10—N3—C14117.05 (18)N2—C9—S1126.06 (14)
C2—C1—C6116.94 (19)N1—C9—S1117.88 (13)
C2—C1—C7120.18 (19)N3—C10—C11124.77 (17)
C6—C1—C7122.84 (18)N3—C10—N2113.16 (15)
C3—C2—C1122.0 (2)C11—C10—N2121.92 (16)
C3—C2—H2A119.0C10—C11—C12115.06 (19)
C1—C2—H2A119.0C10—C11—C15123.32 (19)
C2—C3—C4120.8 (2)C12—C11—C15121.6 (2)
C2—C3—H3119.6C13—C12—C11121.0 (2)
C4—C3—H3119.6C13—C12—H12119.5
C3—C4—C5119.1 (2)C11—C12—H12119.5
C3—C4—H4120.5C14—C13—C12118.4 (2)
C5—C4—H4120.5C14—C13—H13120.8
C4—C5—C6120.2 (2)C12—C13—H13120.8
C4—C5—H5119.9N3—C14—C13123.7 (2)
C6—C5—H5119.9N3—C14—H14118.1
C5—C6—C1120.92 (17)C13—C14—H14118.1
C5—C6—C8118.59 (16)C11—C15—H15A109.5
C1—C6—C8120.42 (16)C11—C15—H15B109.5
C1—C7—H7A109.5H15A—C15—H15B109.5
C1—C7—H7B109.5C11—C15—H15C109.5
H7A—C7—H7B109.5H15A—C15—H15C109.5
C1—C7—H7C109.5H15B—C15—H15C109.5
C6—C1—C2—C30.5 (3)C10—N2—C9—N1−176.19 (16)
C7—C1—C2—C3177.9 (2)C10—N2—C9—S14.8 (3)
C1—C2—C3—C4−1.8 (3)C8—N1—C9—N214.3 (3)
C2—C3—C4—C50.7 (3)C8—N1—C9—S1−166.69 (16)
C3—C4—C5—C61.8 (3)C14—N3—C10—C111.6 (3)
C4—C5—C6—C1−3.1 (3)C14—N3—C10—N2177.29 (19)
C4—C5—C6—C8173.72 (17)C9—N2—C10—N3113.7 (2)
C2—C1—C6—C52.0 (3)C9—N2—C10—C11−70.4 (3)
C7—C1—C6—C5−175.40 (18)N3—C10—C11—C12−2.8 (3)
C2—C1—C6—C8−174.81 (17)N2—C10—C11—C12−178.13 (18)
C7—C1—C6—C87.8 (3)N3—C10—C11—C15175.1 (2)
C9—N1—C8—O10.3 (3)N2—C10—C11—C15−0.2 (3)
C9—N1—C8—C6−178.45 (18)C10—C11—C12—C131.2 (3)
C5—C6—C8—O1−129.5 (2)C15—C11—C12—C13−176.7 (2)
C1—C6—C8—O147.3 (3)C11—C12—C13—C141.3 (4)
C5—C6—C8—N149.2 (2)C10—N3—C14—C131.3 (4)
C1—C6—C8—N1−133.98 (18)C12—C13—C14—N3−2.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (2)2.04 (2)2.697 (2)132.2 (18)
C15—H15A···N20.962.562.961105
N2—H2···O1i0.86 (2)2.30 (2)3.021 (2)142 (2)
C13—H13···S1ii0.932.853.700154

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2229).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yusof, M. S. M., Ahmad Mushtari, N. & Yamin, B. M. (2007). Acta Cryst. E63, o4709.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography