PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m605–m606.
Published online 2008 April 2. doi:  10.1107/S1600536808007757
PMCID: PMC2961258

catena-Poly[[diaqua­zinc(II)]-μ-l-cystein­ato(2−)-κ4 S:S,N,O-[di-μ-sulfido-bis­[oxido­molybdate(V)](MoMo)]-μ-l-cysteinato(2−)-κ4 S,N,O:S]

Abstract

The title compound, [Mo2Zn(C3H5NO2S)2O2S2(H2O)2], forms a one-dimensional chain. The cysteine S atom of the dinuclear molybdenum complex anion coordinates to the zinc ion, which has a tetra­hedral environment by the additional coordination of two water mol­ecules. The one-dimensional chains are connected to each other by hydrogen bonds. The Zn—S(cysteine) distances [2.3599 (6) and 2.3072 (6) Å] are close to the value in ZnS (2.35 Å). The distances and angles within the complex are very close to those reported for the sodium and potassium di-μ-sulfide species.

Related literature

For related literature, see: Brown & Jeffreys (1973 [triangle]); Hong et al. (1983 [triangle]); Kay & Mitchell (1970 [triangle]); Knox & Prout (1969 [triangle]); Shibahara et al. (1987 [triangle]); Lee et al. (1989 [triangle]); Liu & Williams (1981 [triangle]); Xing et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m605-scheme1.jpg

Experimental

Crystal data

  • [Mo2Zn(C3H5NO2S)2O2S2(H2O)2]
  • M r = 627.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m605-efi1.jpg
  • a = 8.6881 (11) Å
  • b = 10.3529 (8) Å
  • c = 9.8686 (11) Å
  • β = 108.2022 (14)°
  • V = 843.23 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.40 mm−1
  • T = 93.1 K
  • 0.35 × 0.30 × 0.10 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.382, T max = 0.727
  • 9357 measured reflections
  • 4556 independent reflections
  • 4549 reflections with F 2 > 2σ(F 2)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.049
  • S = 1.02
  • 4556 reflections
  • 209 parameters
  • 15 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.94 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 2010 Friedel pairs
  • Flack parameter: 0.002 (7)

Data collection: CrystalClear (Rigaku, 1999 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2007 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007757/wk2080sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007757/wk2080Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partly supported by a Special Grant for Cooperative Research administered by the Japan Private School Promotion Foundation.

supplementary crystallographic information

Comment

Molybdenum and L-cysteine are important components of many enzymes. X-ray structures of sulfur/oxygen-bridged dinuclear molybdenum complexes with L-cysteine ligands: Na2[Mo2(µ-S)2O2(cys)2].4H2O (Brown & Jeffreys, 1973; Hong et al., 1983); K2[Mo2S2O2(cys)2].4H2O.CH3OH (Xing et al., 1998), Ca[Mo2(µ-S)(µ-O)O2(cys)2].3H2O (Shibahara et al., 1987), and Na2[Mo2O4(cys)2].5H2O (Knox & Prout, 1969; Kay & Mitchell, 1970; Liu & Williams, 1981), have been reported, where alkaline or alkaline earth metals are counter cations, and the existence of metal-oxygen (cysteine oxygen) bonds has been reported. Seeking another crystal structure type, we used Zn2+ion, as the counter ion. The present structural study of the complex compound Zn[Mo2O2S2(cys)2].2H2O (I) reveals the existence of Zn—S(cysteine sulfur) bonds, which result in polymerization; this type of Zn—S bond has been found in zinc finger proteins. The asymmetric unit of I is shown in Fig. 1 and a view of part of a one-dimensional polymeric chain of I is shown in Fig. 2. The zinc ion bridges the molybdenum complex anions: the coordination of the cysteine sulfur in the complex anion to the zinc ion results in the formation of one dimensional chains, where the zinc forms a tetrahedral structure by the additional coordination of two water molecules. The one dimensional chains are connected to each other by hydrogen bonds. Intra-chain hydrogen bonds also exist. The dimensions of the molybdenum complex and of the zinc tetrahedron are listed in Table 1, and the hydrogen bonds are listed in Table 2. The Zn—S(cysteine) distances (2.3599 (6), 2.3072 (6) Å) are close to that in ZnS (2.35 Å). The distances and angles within the complex are very close to those reported in the sodium and potassium salts in the di-µ-sulfide species.

Experimental

The title compound was prepared by the addition of ZnCl2 to a diluted aqueous solution of Na2[Mo2O2S2(cys)2].4H2O. A crystal suitable for single-crystal X-ray diffraction was selected directly from the prepared sample.

Refinement

H atoms bonded to C, N, and O (H2O) atoms were located in a difference map and refined with distance restraints of C—H = 0.99 (1), N—H = 0.92 (1), and O—H, 0.84 (1) Å, and with Uiso(H) = 1.2Ueq(C, N, O). The absolute structure was confirmed by the value of Flack parameter (0.003 (7)).

Figures

Fig. 1.
The asymmetric unit of I with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
A view of part of a one-dimensional polymeric chain with hydrogen bonds (dashed lines).

Crystal data

[Mo2Zn(C3H5NO2S)2O2S2(H2O)2]F000 = 612.00
Mr = 627.69Dx = 2.472 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 3004 reflections
a = 8.6881 (11) Åθ = 5.5–30.0º
b = 10.3529 (8) ŵ = 3.41 mm1
c = 9.8686 (11) ÅT = 93.1 K
β = 108.2022 (14)ºPlatelet, orange
V = 843.23 (16) Å30.35 × 0.30 × 0.10 mm
Z = 2

Data collection

Rigaku Mercury diffractometer4549 reflections with F2 > 2σ(F2)
Detector resolution: 14.63 pixels mm-1Rint = 0.019
ω scansθmax = 30.0º
Absorption correction: multi-scan(Jacobson, 1998)h = −12→11
Tmin = 0.382, Tmax = 0.727k = −14→14
9357 measured reflectionsl = −13→13
4556 independent reflections

Refinement

Refinement on F2  w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5406P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.001
wR(F2) = 0.049Δρmax = 0.47 e Å3
S = 1.02Δρmin = −0.94 e Å3
4556 reflectionsExtinction correction: none
209 parametersAbsolute structure: Flack (1983), with 2010 Friedel pairs
15 restraintsFlack parameter: 0.002 (7)
H atoms treated by a mixture of independent and constrained refinement

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ>F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mo1−0.056910 (19)0.591229 (16)0.808774 (16)0.00615 (4)
Mo20.113206 (19)0.533750 (19)0.613333 (16)0.00647 (4)
Zn1−0.46728 (3)0.59442 (3)0.84366 (3)0.01008 (4)
S1−0.07812 (7)0.40574 (6)0.67221 (6)0.00917 (8)
S20.16158 (6)0.70395 (5)0.77534 (6)0.00880 (8)
S3−0.22984 (6)0.46976 (5)0.93439 (5)0.00813 (8)
S40.39318 (6)0.59322 (6)0.60271 (5)0.01009 (8)
O1−0.2167 (2)0.68209 (17)0.71583 (17)0.0104 (2)
O20.00101 (19)0.60344 (18)0.45909 (16)0.0111 (2)
O30.2203 (2)0.45050 (18)1.21945 (17)0.0125 (3)
O40.13324 (19)0.49461 (16)0.98677 (16)0.0089 (2)
O50.4690 (2)0.2383 (2)0.7999 (2)0.0217 (3)
O60.2865 (2)0.39663 (18)0.77426 (17)0.0125 (3)
O7−0.3954 (2)0.77830 (18)0.9006 (2)0.0182 (3)
O8−0.54704 (19)0.55572 (18)1.00931 (17)0.0136 (3)
N1−0.0163 (2)0.70357 (19)1.01408 (19)0.0087 (3)
N20.1744 (2)0.3658 (2)0.4962 (2)0.0102 (3)
C10.0084 (2)0.6095 (2)1.1320 (2)0.0092 (3)
C20.1322 (2)0.5110 (2)1.1161 (2)0.0083 (3)
C3−0.1525 (2)0.5421 (2)1.1147 (2)0.0099 (3)
C40.3455 (2)0.3284 (2)0.5675 (2)0.0112 (3)
C50.3694 (2)0.3165 (2)0.7269 (2)0.0116 (4)
C60.4534 (2)0.4378 (2)0.5447 (2)0.0130 (4)
H10.06830.75961.02560.010*
H2−0.10270.75511.01240.010*
H30.10900.29570.49190.012*
H40.16240.38900.40390.012*
H5−0.22990.60421.13340.012*
H6−0.13660.47271.18690.012*
H70.04600.64821.22910.011*
H80.43180.44160.44030.016*
H90.57060.42430.59280.016*
H100.38210.24580.53590.013*
H11−0.36380.82900.84870.022*
H12−0.43030.80350.96590.022*
H13−0.52930.61971.06460.016*
H14−0.64240.52810.98160.016*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.00760 (7)0.00633 (8)0.00567 (7)0.00053 (6)0.00374 (5)0.00047 (6)
Mo20.00756 (7)0.00729 (8)0.00565 (7)0.00067 (6)0.00364 (5)0.00022 (6)
Zn10.01030 (10)0.01118 (12)0.00928 (10)0.00082 (10)0.00382 (8)−0.00105 (9)
S10.0114 (2)0.0085 (2)0.0091 (2)−0.00148 (18)0.00549 (17)−0.00119 (17)
S20.0109 (2)0.0077 (2)0.0098 (2)−0.00074 (18)0.00601 (17)−0.00107 (17)
S30.0087 (2)0.0085 (2)0.0086 (2)−0.00003 (18)0.00480 (16)−0.00014 (17)
S40.0088 (2)0.0127 (2)0.0098 (2)−0.0003 (2)0.00436 (16)0.00152 (19)
O10.0111 (6)0.0117 (8)0.0102 (6)0.0024 (5)0.0060 (5)0.0015 (5)
O20.0113 (6)0.0135 (8)0.0097 (6)0.0019 (6)0.0048 (5)0.0014 (6)
O30.0152 (7)0.0123 (8)0.0101 (6)0.0030 (6)0.0039 (5)0.0014 (6)
O40.0102 (6)0.0099 (7)0.0074 (6)0.0011 (5)0.0041 (5)0.0002 (5)
O50.0216 (8)0.0185 (9)0.0221 (8)0.0064 (7)0.0027 (7)0.0083 (7)
O60.0166 (7)0.0129 (8)0.0087 (6)0.0010 (6)0.0049 (5)−0.0004 (5)
O70.0217 (9)0.0131 (8)0.0250 (8)−0.0031 (7)0.0146 (7)−0.0054 (7)
O80.0096 (6)0.0217 (10)0.0103 (6)−0.0025 (5)0.0045 (5)−0.0045 (6)
N10.0111 (7)0.0069 (8)0.0096 (7)0.0002 (6)0.0053 (6)0.0004 (6)
N20.0096 (7)0.0125 (9)0.0084 (7)0.0010 (6)0.0026 (6)−0.0032 (6)
C10.0131 (8)0.0086 (10)0.0067 (7)0.0002 (7)0.0043 (6)−0.0005 (7)
C20.0099 (8)0.0060 (10)0.0107 (8)−0.0019 (6)0.0058 (6)−0.0008 (6)
C30.0118 (8)0.0109 (9)0.0088 (7)−0.0005 (7)0.0060 (6)0.0001 (7)
C40.0114 (8)0.0130 (10)0.0088 (8)0.0038 (7)0.0024 (6)−0.0032 (7)
C50.0126 (9)0.0095 (10)0.0124 (9)−0.0007 (7)0.0034 (7)0.0003 (7)
C60.0117 (9)0.0186 (11)0.0099 (8)0.0019 (7)0.0052 (7)−0.0024 (8)

Geometric parameters (Å, °)

Mo1—O11.6905 (17)O5—C51.238 (3)
Mo1—O42.2366 (16)O6—C51.279 (3)
Mo1—N12.2662 (19)O7—H110.837
Mo1—S12.3201 (6)O7—H120.835
Mo1—S22.3378 (6)O8—H130.841
Mo1—S32.5572 (6)O8—H140.838
Mo1—Mo22.8354 (3)N1—C11.481 (3)
Mo2—O21.6914 (16)N1—H10.915
Mo2—N22.2419 (19)N1—H20.917
Mo2—O62.3044 (18)N2—C41.484 (3)
Mo2—S22.3276 (6)N2—H30.914
Mo2—S12.3368 (6)N2—H40.915
Mo2—S42.5428 (6)C1—C31.523 (3)
Zn1—O82.0052 (17)C1—C21.526 (3)
Zn1—O72.0275 (19)C1—H70.995
Zn1—S4i2.3072 (6)C3—H50.989
Zn1—S32.3599 (6)C3—H60.991
S3—C31.852 (2)C4—C51.527 (3)
S4—C61.838 (3)C4—C61.531 (4)
S4—Zn1ii2.3072 (6)C4—H100.996
O3—C21.237 (3)C6—H80.989
O4—C21.290 (2)C6—H90.989
O1—Mo1—O4162.73 (7)C6—S4—Zn1ii102.50 (7)
O1—Mo1—N194.11 (7)C6—S4—Mo299.79 (8)
O4—Mo1—N169.93 (6)Zn1ii—S4—Mo299.22 (2)
O1—Mo1—S1104.04 (6)C2—O4—Mo1119.10 (14)
O4—Mo1—S189.50 (4)C5—O6—Mo2117.99 (14)
N1—Mo1—S1154.97 (5)Zn1—O7—H11123.4
O1—Mo1—S2102.18 (6)Zn1—O7—H12110.6
O4—Mo1—S284.32 (4)H11—O7—H12122.9
N1—Mo1—S287.91 (5)Zn1—O8—H13109.3
S1—Mo1—S2104.59 (2)Zn1—O8—H14111.1
O1—Mo1—S391.69 (6)H13—O8—H14116.3
O4—Mo1—S378.52 (4)C1—N1—Mo1107.99 (13)
N1—Mo1—S376.70 (5)C1—N1—H1113.9
S1—Mo1—S385.55 (2)Mo1—N1—H1109.3
S2—Mo1—S3160.022 (19)C1—N1—H2108.3
O1—Mo1—Mo2105.18 (6)Mo1—N1—H2112.6
O4—Mo1—Mo291.51 (4)H1—N1—H2104.8
N1—Mo1—Mo2138.35 (5)C4—N2—Mo2108.76 (13)
S1—Mo1—Mo252.760 (15)C4—N2—H3109.3
S2—Mo1—Mo252.411 (14)Mo2—N2—H3113.3
S3—Mo1—Mo2137.441 (15)C4—N2—H4109.0
O2—Mo2—N291.69 (8)Mo2—N2—H4109.8
O2—Mo2—O6162.14 (7)H3—N2—H4106.6
N2—Mo2—O670.64 (6)N1—C1—C3108.11 (17)
O2—Mo2—S2103.00 (6)N1—C1—C2107.01 (16)
N2—Mo2—S2156.97 (5)C3—C1—C2109.49 (18)
O6—Mo2—S293.10 (5)N1—C1—H7114.5
O2—Mo2—S1102.18 (6)C3—C1—H7107.9
N2—Mo2—S189.44 (5)C2—C1—H7109.8
O6—Mo2—S180.89 (5)O3—C2—O4123.7 (2)
S2—Mo2—S1104.38 (2)O3—C2—C1121.88 (18)
O2—Mo2—S498.59 (6)O4—C2—C1114.38 (18)
N2—Mo2—S477.44 (5)C1—C3—S3109.75 (13)
O6—Mo2—S475.53 (5)C1—C3—H5109.6
S2—Mo2—S482.83 (2)S3—C3—H5112.2
S1—Mo2—S4155.71 (2)C1—C3—H6109.6
O2—Mo2—Mo1104.26 (5)S3—C3—H6109.0
N2—Mo2—Mo1140.49 (5)H5—C3—H6106.7
O6—Mo2—Mo191.59 (4)N2—C4—C5107.66 (18)
S2—Mo2—Mo152.737 (15)N2—C4—C6107.82 (19)
S1—Mo2—Mo152.226 (15)C5—C4—C6108.60 (18)
S4—Mo2—Mo1133.300 (15)N2—C4—H10116.5
O8—Zn1—O796.70 (7)C5—C4—H10107.4
O8—Zn1—S4i129.42 (5)C6—C4—H10108.7
O7—Zn1—S4i107.94 (6)O5—C5—O6125.6 (2)
O8—Zn1—S393.73 (5)O5—C5—C4119.9 (2)
O7—Zn1—S3104.55 (6)O6—C5—C4114.4 (2)
S4i—Zn1—S3120.25 (2)C4—C6—S4110.80 (15)
Mo1—S1—Mo275.014 (19)C4—C6—H8104.8
Mo2—S2—Mo174.853 (18)S4—C6—H8108.1
C3—S3—Zn198.94 (7)C4—C6—H9114.2
C3—S3—Mo1100.08 (7)S4—C6—H9109.0
Zn1—S3—Mo197.09 (2)H8—C6—H9109.7

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H11···O3iii0.842.032.832 (2)161
O7—H11···O4iii0.842.753.139 (2)110
O7—H12···O5iii0.842.533.239 (3)144
O7—H12···O6iii0.842.663.285 (2)133
O7—H12···O8iv0.842.643.093 (2)116
O8—H13···O5iii0.841.772.604 (2)171
O8—H14···O4i0.842.002.789 (2)158
O8—H14···O6i0.842.372.844 (2)116
N1—H2···O4iii0.922.493.179 (2)132
N1—H2···O70.922.453.224 (2)143
N2—H3···O2v0.912.323.212 (2)164
N2—H4···O1v0.922.562.934 (2)105
N2—H4···O3vi0.922.133.011 (2)161

Symmetry codes: (iii) −x, y+1/2, −z+2; (iv) −x−1, y+1/2, −z+2; (i) x−1, y, z; (v) −x, y−1/2, −z+1; (vi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2080).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brown, D. H. & Jeffreys, J. A. D. (1973). J. Chem. Soc. Dalton Trans. pp. 732–735.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hong, M.-C., Shi, J., Huang, Z. & Liu, H. (1983). Jiegou Huaxue, 2, 153–156.
  • Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
  • Kay, A. & Mitchell, P. C. H. (1970). J. Chem. Soc. A, pp. 2421–2428.
  • Knox, J. R. & Prout, C. K. (1969). Acta Cryst. B25, 1857–1866.
  • Lee, M. S., Gippert, G. P., Soman, K. V., Case, D. A. & Wright, P. E. (1989). Science, 245, 635–637. [PubMed]
  • Liu, H. & Williams, G. J. B. (1981). Acta Cryst. B37, 2065–2067.
  • Rigaku (1999). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2007). CrystalStructure Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shibahara, T., Kuroya, H., Matsumoto, K. & Ooi, S. (1987). Bull. Chem. Soc. Jpn, 60, 2277–2279.
  • Xing, Y.-H., Xu, J.-Q., Li, D.-M., Sun, H.-R., Bu, W.-M., Ye, L., Yang, G.-D. & Fan, Y.-G. (1998). Synth. React. Inorg. Met. Org. Chem.28, 1493–1503.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography