PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m720.
Published online 2008 April 26. doi:  10.1107/S1600536808011094
PMCID: PMC2961257

4-(Dimethylamino)pyridinium dibromidotriphenyl­stannate(IV)

Abstract

The anion in the title salt, (C7H11N2)[SnBr2(C6H5)3], lies on a twofold rotation axis that passes through the metal atom as well as the Cipso—Cpara atoms of one of the aromatic rings. The metal center is five-coordinate in a trans-Br2SnC3 trigonal bipyramidal geometry. The cation is disordered about a center of inversion.

Related literature

For the crystal structures of dibromidotriorganostannates, see: Aslanov et al. (1977 [triangle]); Spek et al. (2004 [triangle]); Wharf & Simard (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m720-scheme1.jpg

Experimental

Crystal data

  • (C7H11N2)[SnBr2(C6H5)3]
  • M r = 632.99
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m720-efi1.jpg
  • a = 15.5955 (2) Å
  • b = 10.6897 (1) Å
  • c = 14.8204 (2) Å
  • β = 93.924 (1)°
  • V = 2464.93 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.29 mm−1
  • T = 100 K
  • 0.3 × 0.2 × 0.1 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.368, T max = 0.651
  • 24740 measured reflections
  • 2840 independent reflections
  • 2328 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.069
  • S = 1.05
  • 2840 reflections
  • 180 parameters
  • 69 restraints
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −1.16 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011094/sg2227sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011094/sg2227Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for funding this study (FR155/2007 A) and also for the purchase of the diffractometer.

supplementary crystallographic information

Comment

The aqueous solubility of biocidal triorganotin halides can be improved by converting them to their ionic salts through treatment with an ammonium halide. A small number of ammonium dihalogenotriorganostannates are known; tetraethylammonium dibromidotriphenylstannate, who crystal structure is known, is synthesized in this manner (Wharf & Simard, 1991).

The present synthesis uses the mild brominating agent, 4-dimethylaminopyridine hydrobromide perbromide, which cleaves one of the four tin-carbon bonds of tetraphenyltin to yield the bromidotriphenylstannate anion. In the title compound (I), the anion lies about a twofold rotation axis that passes through the metal atom as well as the Cipso–Cpara atoms of one of the aromatic rings. The metal center is five-coordinate in a trans-C3SnBr2 trigonal bipyramidal geometry. The cation and anion exist as two non-interacting species (Fig. 1).

Experimental

Tetraphenyltin (2 g, 4.7 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (1.7 g, 4.6 mmol) were heated in chloroform (100 ml) for 6 h. The solution was filtered and the solvent allow to evaporate to give yellow crystals (m.p. 455–457 K, 80% yield).

Refinement

The cation is disordered over a center-of-inversion, and was allowed to refine over this symmetry element as a half-occupancy cation. For the aromatic ring, 1,2-related distances were restrained to 1.39±0.01 Å and 1,3-related ones to 2.78±0.01 Å. For the dimethylamino group, the N–C distances were restrained to 1.50±0.01 Å. Anisotropic temperature factors of the carbon and nitrogen atoms were restrained to be nearly isotropic.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The ammonium H-atom was similarly treated (N–H 0.86 Å; U(H) = 1.2U(B).

The final difference Fourier map had a large peak at 1 Å from Br1.

Figures

Fig. 1.
Thermal ellipsoid plot of the title compound.

Crystal data

(C7H11N2)[SnBr2(C6H5)3]F000 = 1240
Mr = 632.99Dx = 1.706 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7191 reflections
a = 15.5955 (2) Åθ = 2.3–24.8º
b = 10.6897 (1) ŵ = 4.29 mm1
c = 14.8204 (2) ÅT = 100 K
β = 93.924 (1)ºBlock, yellow
V = 2464.93 (5) Å30.3 × 0.2 × 0.1 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer2840 independent reflections
Radiation source: fine-focus sealed tube2328 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 100 Kθmax = 27.5º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −20→20
Tmin = 0.368, Tmax = 0.651k = −13→13
24740 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.069  w = 1/[σ2(Fo2) + (0.0352P)2 + 2.1489P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2840 reflectionsΔρmax = 0.34 e Å3
180 parametersΔρmin = −1.16 e Å3
69 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Sn10.50000.76516 (2)0.75000.03975 (9)
Br10.56766 (2)0.76825 (3)0.928473 (19)0.05538 (10)
C10.60873 (15)0.8708 (2)0.71394 (16)0.0377 (5)
C20.69169 (17)0.8273 (3)0.73324 (19)0.0504 (6)
H20.70040.75120.76290.061*
C30.76163 (18)0.8960 (3)0.7087 (2)0.0613 (8)
H30.81690.86470.72060.074*
C40.7501 (2)1.0094 (3)0.6672 (2)0.0647 (9)
H40.79741.05570.65150.078*
C50.6686 (2)1.0548 (3)0.6489 (2)0.0648 (8)
H50.66031.13220.62100.078*
C60.59864 (18)0.9851 (3)0.6720 (2)0.0518 (7)
H60.54351.01620.65880.062*
C70.50000.5641 (3)0.75000.0372 (7)
C80.51067 (16)0.4971 (3)0.67160 (19)0.0461 (6)
H80.51730.53990.61790.055*
C90.51168 (18)0.3672 (3)0.6717 (2)0.0557 (7)
H90.52030.32390.61870.067*
C100.50000.3029 (4)0.75000.0595 (11)
H100.50000.21590.75000.071*
N10.3033 (4)0.9766 (5)1.0723 (4)0.0750 (16)0.50
H10.32071.04681.09500.090*0.50
C110.3619 (5)0.8914 (9)1.0461 (4)0.065 (4)0.50
H110.42030.91011.05300.078*0.50
C120.3361 (4)0.7792 (6)1.0100 (4)0.0548 (14)0.50
H120.37570.72090.99200.066*0.50
C130.2490 (6)0.7552 (8)1.0011 (6)0.0454 (9)0.50
C140.1886 (3)0.8397 (5)1.0268 (4)0.0547 (14)0.50
H140.13020.82151.01990.066*0.50
C150.2171 (6)0.9515 (9)1.0628 (6)0.091 (9)0.50
H150.17781.01041.08080.109*0.50
N20.2210 (3)0.6420 (4)0.9598 (3)0.0512 (11)0.50
C160.2813 (5)0.5487 (7)0.9338 (7)0.059 (6)0.50
H16A0.31260.58030.88500.089*0.50
H16B0.25080.47440.91450.089*0.50
H16C0.32080.52950.98440.089*0.50
C170.1314 (6)0.6173 (12)0.9365 (9)0.077 (4)0.50
H17A0.09980.62390.98970.116*0.50
H17B0.12500.53450.91190.116*0.50
H17C0.10960.67720.89240.116*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.03660 (13)0.03341 (14)0.04972 (15)0.0000.00641 (10)0.000
Br10.05950 (19)0.0641 (2)0.04166 (16)−0.00651 (13)−0.00302 (13)−0.00418 (12)
C10.0366 (12)0.0376 (13)0.0393 (12)−0.0018 (10)0.0044 (10)−0.0026 (10)
C20.0446 (14)0.0523 (17)0.0544 (16)0.0075 (12)0.0036 (12)0.0014 (13)
C30.0356 (14)0.085 (2)0.0640 (19)−0.0006 (14)0.0056 (13)−0.0193 (17)
C40.0598 (19)0.073 (2)0.0630 (19)−0.0290 (17)0.0163 (15)−0.0189 (17)
C50.078 (2)0.0459 (17)0.070 (2)−0.0193 (15)0.0078 (17)0.0074 (15)
C60.0485 (15)0.0409 (15)0.0651 (18)−0.0002 (12)−0.0021 (13)0.0052 (13)
C70.0311 (16)0.0348 (17)0.0456 (19)0.0000.0023 (14)0.000
C80.0429 (14)0.0454 (14)0.0503 (15)−0.0012 (11)0.0056 (11)−0.0031 (12)
C90.0529 (16)0.0472 (16)0.0668 (19)0.0020 (13)0.0029 (14)−0.0157 (14)
C100.055 (2)0.038 (2)0.085 (3)0.000−0.001 (2)0.000
N10.080 (4)0.075 (4)0.070 (3)−0.024 (3)0.002 (3)−0.017 (3)
C110.057 (5)0.077 (7)0.061 (5)−0.010 (5)−0.003 (4)−0.002 (4)
C120.050 (3)0.066 (4)0.049 (3)0.000 (3)0.003 (2)0.004 (3)
C130.051 (2)0.050 (2)0.0354 (18)−0.0006 (18)0.0071 (16)0.0045 (17)
C140.050 (3)0.058 (3)0.057 (3)−0.004 (3)0.009 (3)−0.007 (3)
C150.096 (12)0.091 (12)0.088 (12)−0.004 (8)0.017 (8)−0.006 (8)
N20.061 (3)0.046 (2)0.047 (3)−0.002 (2)0.003 (2)−0.001 (2)
C160.068 (8)0.049 (7)0.061 (8)0.005 (5)0.014 (5)−0.018 (5)
C170.073 (7)0.068 (6)0.088 (6)−0.018 (5)−0.005 (5)−0.006 (5)

Geometric parameters (Å, °)

Sn1—C12.135 (2)C10—C9i1.372 (4)
Sn1—C1i2.135 (2)C10—H100.9300
Sn1—C72.149 (3)N1—C111.366 (9)
Sn1—Br1i2.7801 (3)N1—C151.369 (9)
Sn1—Br12.7801 (3)N1—H10.8600
C1—C61.375 (4)C11—C121.363 (9)
C1—C21.386 (3)C11—H110.9300
C2—C31.384 (4)C12—C131.379 (9)
C2—H20.9300C12—H120.9300
C3—C41.365 (5)C13—C141.378 (9)
C3—H30.9300C13—N21.412 (8)
C4—C51.371 (5)C14—C151.370 (9)
C4—H40.9300C14—H140.9300
C5—C61.383 (4)C15—H150.9300
C5—H50.9300N2—C161.441 (7)
C6—H60.9300N2—C171.441 (8)
C7—C81.384 (3)C16—H16A0.9600
C7—C8i1.384 (3)C16—H16B0.9600
C8—C91.389 (4)C16—H16C0.9600
C8—H80.9300C17—H17A0.9600
C9—C101.372 (4)C17—H17B0.9600
C9—H90.9300C17—H17C0.9600
C1—Sn1—C1i116.17 (13)C9—C8—C7121.2 (3)
C1—Sn1—C7121.92 (6)C9—C8—H8119.4
C1i—Sn1—C7121.92 (6)C7—C8—H8119.4
C1—Sn1—Br188.61 (6)C10—C9—C8120.0 (3)
C1—Sn1—Br1i90.68 (6)C10—C9—H9120.0
C1i—Sn1—Br1i88.61 (6)C8—C9—H9120.0
C7—Sn1—Br190.68 (1)C9—C10—C9i119.8 (4)
C7—Sn1—Br1i90.68 (1)C9—C10—H10120.1
C1i—Sn1—Br190.68 (6)C9i—C10—H10120.1
Br1—Sn1—Br1i178.64 (2)C11—N1—C15120.8 (7)
C6—C1—C2117.9 (2)C11—N1—H1119.6
C6—C1—Sn1120.98 (18)C15—N1—H1119.6
C2—C1—Sn1121.13 (19)C12—C11—N1120.8 (7)
C3—C2—C1120.6 (3)C12—C11—H11119.6
C3—C2—H2119.7N1—C11—H11119.6
C1—C2—H2119.7C11—C12—C13117.7 (6)
C4—C3—C2120.5 (3)C11—C12—H12121.2
C4—C3—H3119.7C13—C12—H12121.2
C2—C3—H3119.7C14—C13—C12122.6 (7)
C3—C4—C5119.7 (3)C14—C13—N2119.0 (7)
C3—C4—H4120.2C12—C13—N2118.3 (7)
C5—C4—H4120.2C15—C14—C13118.0 (7)
C4—C5—C6119.8 (3)C15—C14—H14121.0
C4—C5—H5120.1C13—C14—H14121.0
C6—C5—H5120.1C14—C15—N1120.1 (7)
C1—C6—C5121.5 (3)C14—C15—H15120.0
C1—C6—H6119.2N1—C15—H15120.0
C5—C6—H6119.2C13—N2—C16121.4 (6)
C8—C7—C8i117.7 (3)C13—N2—C17121.8 (7)
C8—C7—Sn1121.13 (17)C16—N2—C17116.7 (7)
C8i—C7—Sn1121.13 (17)
C1i—Sn1—C1—C6−32.12 (19)C1—Sn1—C7—C8i119.08 (14)
C7—Sn1—C1—C6147.88 (19)C1i—Sn1—C7—C8i−60.92 (14)
Br1i—Sn1—C1—C656.7 (2)Br1i—Sn1—C7—C8i−149.70 (12)
Br1—Sn1—C1—C6−122.2 (2)Br1—Sn1—C7—C8i30.30 (12)
C1i—Sn1—C1—C2146.9 (2)C8i—C7—C8—C9−0.75 (19)
C7—Sn1—C1—C2−33.1 (2)Sn1—C7—C8—C9179.25 (19)
Br1i—Sn1—C1—C2−124.3 (2)C7—C8—C9—C101.5 (4)
Br1—Sn1—C1—C256.9 (2)C8—C9—C10—C9i−0.74 (18)
C6—C1—C2—C3−1.6 (4)C15—N1—C11—C12−0.1 (3)
Sn1—C1—C2—C3179.4 (2)N1—C11—C12—C13−0.1 (3)
C1—C2—C3—C41.8 (5)C11—C12—C13—C140.2 (7)
C2—C3—C4—C5−0.7 (5)C11—C12—C13—N2177.0 (7)
C3—C4—C5—C6−0.4 (5)C12—C13—C14—C15−0.2 (10)
C2—C1—C6—C50.4 (4)N2—C13—C14—C15−177.0 (7)
Sn1—C1—C6—C5179.5 (2)C13—C14—C15—N10.1 (9)
C4—C5—C6—C10.6 (5)C11—N1—C15—C140.1 (7)
C1—Sn1—C7—C8−60.92 (14)C14—C13—N2—C16−178.4 (7)
C1i—Sn1—C7—C8119.08 (14)C12—C13—N2—C164.7 (11)
Br1i—Sn1—C7—C830.30 (12)C14—C13—N2—C175.7 (12)
Br1—Sn1—C7—C8−149.70 (12)C12—C13—N2—C17−171.2 (9)

Symmetry codes: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2227).

References

  • Aslanov, L. A., Attiya, V. M., Ionov, V. M., Permin, A. B. & Petrosyan, V. S. (1977). Zh. Strukt. Khim.18, 1113–1118.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L., Wijkens, P. & van Koten, G. (2004). Private communication (refcode CSIGOC). CCDC, Cambridge, England.
  • Westrip, S. P. (2008). publCIF In preparation.
  • Wharf, I. & Simard, M. G. (1991). Acta Cryst. C47, 1605–1609.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography