PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m678.
Published online 2008 April 16. doi:  10.1107/S1600536808009975
PMCID: PMC2961256

(2-Formyl-6-methoxy­phenolato-κ2 O 1,O 2)(perchlorato-κO)(1,10-phenanthroline-κ2 N,N′)copper(II)

Abstract

In the title mol­ecule, [Cu(C8H7O3)(ClO4)(C12H8N2)], the CuII ion is five-coordinated by two N atoms [Cu—N = 1.995 (3) and 2.022 (3) Å] from a 1,10-phenanthroline ligand, two O atoms [Cu—O = 1.908 (2) and 1.927 (2) Å] from an o-vanillin ligand and one O atom [Cu—O = 2.510 (3) Å] from a perchlorate anion in a distorted square-pyramidal geometry. Three O atoms of the perchlorate anion are rotationally disordered between two orientations, with occupancies of 0.525 (13) and 0.475 (13). In the crystal structure, two mol­ecules related by a centre of symmetry are paired in such a way that the phenolate O atom from one mol­ecule completes the distorted octa­hedral Cu coordination in another mol­ecule [Cu(...)O = 2.704 (2) Å].

Related literature

For general background, see: Janzen et al. (2004 [triangle]). For related structures, see: Plieger et al. (2004 [triangle]); Lin & Zeng (2006 [triangle]); Youngme et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m678-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H7O3)(ClO4)(C12H8N2)]
  • M r = 494.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m678-efi1.jpg
  • a = 22.332 (2) Å
  • b = 9.3986 (9) Å
  • c = 18.339 (2) Å
  • β = 96.733 (2)°
  • V = 3822.7 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.33 mm−1
  • T = 298 (2) K
  • 0.26 × 0.17 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.723, T max = 0.846
  • 9561 measured reflections
  • 3374 independent reflections
  • 2731 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.109
  • S = 1.00
  • 3374 reflections
  • 309 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009975/cv2393sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009975/cv2393Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the National Natural Science Foundation of China (grant No. 20471056) and the PhD Program Foundation of the Ministry of Education of China (grant No. 20060423005).

supplementary crystallographic information

Comment

Studies of complexes containing salicylaldehyde and its derivatives have been reported by Janzen et al. (2004) and other groups. The five-coordinated CuII complexes have been extensively investigated and the relationship between their structures and reactivities is of major importance. We report here the synthesis and structure of the title complex, (I).

In complex (I), the CuII ion is five-coordinated by N1 and N2 atoms from 1,10-phenanthroline ligand, O1 and O2 atoms from o-vanillin and O4 atom from perchlorate anion in a distorted square-pyramidal geometry. Atom O4 lies in the axial position and the equatorial positions are occupied by the other four donor atoms. The bond distances for Cu1—N1 and Cu1—N2 of 2.022 (3)Å and 1.995 (3)Å, respectively, are nearly as long as those found for the similar auxiliary phen ligand (Youngme et al., 2005). The bond lengths for Cu1—O1 and Cu1—O2 of 1.927 (2)Å and 1.908 (2) Å, respectively, are slightly shorter than those of reported o-vanillin complex [1.965 (2) and 1.9201 (17) Å; Lin & Zeng, 2006]. The Cu1—O4 bond distance of 2.510 (3)Å is in the range observed in analogous compound [2.381 (4)Å and 2.559 (4) Å; Plieger et al., 2004]. The larger angles around Cu are near 180°, so the ligands form a satisfactory N2 O2 square, with atom O4 inhabiting the axial position. In this way, a distorted square-pyramid is formed (Fig. 1). Three O atoms of perchlorate anion are rotationally disordered between two orientations with the occupancies of 0.525 (13) and 0.475 (13), respectively.

In the crystal, two molecules related by centre of symmetry are paired in such a way, that phenolate O atom from one molecule complete the distorted octahedral Cu coordination [Cu—O 2.704 (2) Å] in another molecule (Fig. 2).

Experimental

To a solution of Cu(ClO4)2.6H2O (2 mmol, 741 mg) in water (25 ml) was added the mixture of 1,10-phenanthroline (2 mmol, 396 mg), o-vanillin (2 mmol, 304 mg) and NaOH (2 mmol, 40 mg) in ethanol (30 ml) and water (10 ml). The resulting solution was refluxed for 3 h and then concentrated to 40 ml. On standing for a week at room temperature complex (I) formed as green crystals. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 86%). Analysis; calculated for C20H15ClN2O7Cu: C, 48.59; H, 3.06; N, 5.67%; Found: C, 48.61; H, 3.08; N, 5.64%.

Refinement

H atoms were positioned geometrically [0.93 (CH) and 0.96 (CH3) Å] and constrained to ride on their parent atoms with Uiso(H) = 1.2 (1.5 for methyl) Ueq. Atoms of O5, O6 and O7 appeared to be disordered, and were refined as two parts (occupancy factors are 0.525 (13) and 0.475 (13), respectively).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids. Only major part of the disordered perchlorate anion is drawn. H atoms omitted for clarity.
Fig. 2.
A portion of the crystal packing showing the paired molecules with the short intermolecular Cu···O distances (dashed lines) of 2.704 (2) Å. For disordered perchlorate anions, only major parts are drawn. H atoms ...

Crystal data

[Cu(C8H7O3)(ClO4)(C12H8N2)]F000 = 2008
Mr = 494.33Dx = 1.718 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3881 reflections
a = 22.332 (2) Åθ = 2.2–27.3º
b = 9.3986 (9) ŵ = 1.33 mm1
c = 18.339 (2) ÅT = 298 (2) K
β = 96.733 (2)ºBlock, green
V = 3822.7 (7) Å30.26 × 0.17 × 0.13 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer3374 independent reflections
Radiation source: fine-focus sealed tube2731 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −26→22
Tmin = 0.723, Tmax = 0.846k = −9→11
9561 measured reflectionsl = −21→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109  w = 1/[σ2(Fo2) + (0.0555P)2 + 9.3448P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3374 reflectionsΔρmax = 0.52 e Å3
309 parametersΔρmin = −0.53 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.188504 (18)0.31643 (4)0.04538 (2)0.03647 (16)
Cl10.10243 (5)0.11761 (11)0.16636 (6)0.0566 (3)
N10.13385 (12)0.4848 (3)0.01905 (15)0.0371 (6)
N20.13152 (12)0.2220 (3)−0.03161 (14)0.0335 (6)
O10.23634 (11)0.4265 (2)0.11935 (13)0.0423 (6)
O20.23876 (10)0.1526 (2)0.06151 (12)0.0384 (6)
O30.27110 (11)−0.1131 (2)0.08481 (13)0.0454 (6)
O40.12199 (17)0.2487 (3)0.14103 (19)0.0820 (10)
O50.0588 (4)0.0750 (10)0.1043 (5)0.109 (4)0.525 (13)
O60.0777 (7)0.1165 (15)0.2296 (6)0.133 (6)0.525 (13)
O70.1471 (4)0.0082 (10)0.1615 (7)0.115 (5)0.525 (13)
O5'0.1432 (5)0.1020 (11)0.2320 (6)0.116 (5)0.475 (13)
O6'0.1046 (7)0.0038 (12)0.1247 (6)0.125 (5)0.475 (13)
O7'0.0456 (5)0.1427 (13)0.1921 (8)0.107 (5)0.475 (13)
C10.27125 (15)0.3732 (4)0.17002 (19)0.0397 (8)
H10.28730.43520.20680.048*
C20.28934 (14)0.2287 (4)0.17814 (18)0.0343 (7)
C30.27120 (14)0.1246 (4)0.12378 (17)0.0327 (7)
C40.29105 (15)−0.0172 (4)0.13831 (17)0.0355 (7)
C50.32785 (15)−0.0494 (4)0.20140 (19)0.0427 (8)
H50.3408−0.14270.20980.051*
C60.34618 (16)0.0553 (4)0.2532 (2)0.0471 (9)
H60.37140.03140.29540.057*
C70.32762 (16)0.1911 (4)0.24245 (19)0.0446 (9)
H70.34000.26010.27730.054*
C80.2885 (2)−0.2566 (4)0.0982 (2)0.0574 (11)
H8A0.3317−0.26310.10470.086*
H8B0.2727−0.31430.05710.086*
H8C0.2729−0.28980.14170.086*
C90.13505 (17)0.6141 (4)0.0476 (2)0.0461 (9)
H90.16480.63640.08570.055*
C100.09285 (19)0.7191 (4)0.0221 (2)0.0562 (11)
H100.09450.80880.04360.067*
C110.04975 (18)0.6887 (4)−0.0340 (2)0.0554 (11)
H110.02170.7577−0.05110.067*
C120.04740 (16)0.5535 (4)−0.0665 (2)0.0470 (9)
C130.09052 (14)0.4546 (4)−0.03700 (18)0.0362 (8)
C140.08937 (15)0.3117 (4)−0.06422 (18)0.0360 (8)
C150.04546 (16)0.2703 (4)−0.12121 (19)0.0451 (9)
C160.04672 (17)0.1275 (5)−0.1436 (2)0.0528 (10)
H160.01860.0944−0.18110.063*
C170.08918 (18)0.0381 (4)−0.1103 (2)0.0505 (9)
H170.0903−0.0563−0.12530.061*
C180.13112 (16)0.0874 (4)−0.05372 (19)0.0420 (8)
H180.15950.0245−0.03090.050*
C190.00371 (17)0.5082 (5)−0.1256 (2)0.0576 (11)
H19−0.02460.5732−0.14680.069*
C200.00277 (18)0.3747 (5)−0.1509 (2)0.0582 (11)
H20−0.02650.3489−0.18900.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0394 (3)0.0299 (2)0.0376 (2)0.00616 (17)−0.00553 (17)0.00138 (18)
Cl10.0526 (6)0.0501 (6)0.0662 (7)−0.0052 (5)0.0029 (5)0.0124 (5)
N10.0390 (15)0.0334 (16)0.0393 (15)0.0047 (12)0.0065 (13)0.0045 (13)
N20.0315 (14)0.0320 (15)0.0366 (15)0.0019 (11)0.0017 (12)0.0044 (12)
O10.0485 (14)0.0300 (13)0.0458 (14)0.0028 (10)−0.0058 (12)−0.0011 (11)
O20.0459 (14)0.0338 (13)0.0321 (12)0.0084 (10)−0.0096 (10)0.0003 (10)
O30.0582 (16)0.0298 (13)0.0453 (14)0.0069 (11)−0.0066 (12)−0.0024 (11)
O40.116 (3)0.054 (2)0.083 (2)−0.0084 (19)0.041 (2)0.0074 (18)
O50.086 (6)0.104 (7)0.124 (7)−0.020 (5)−0.037 (5)0.023 (5)
O60.161 (17)0.153 (11)0.092 (8)−0.031 (10)0.047 (8)0.032 (7)
O70.093 (7)0.081 (6)0.167 (12)0.014 (5)−0.003 (6)0.038 (7)
O5'0.134 (10)0.098 (7)0.099 (8)0.017 (6)−0.061 (6)0.027 (6)
O6'0.165 (16)0.085 (7)0.120 (9)−0.016 (9)0.001 (9)−0.035 (7)
O7'0.072 (7)0.105 (7)0.149 (13)0.001 (5)0.032 (6)0.031 (8)
C10.0415 (19)0.039 (2)0.0375 (19)−0.0060 (16)0.0003 (16)−0.0054 (16)
C20.0345 (17)0.0327 (18)0.0351 (17)−0.0034 (14)0.0017 (14)0.0042 (14)
C30.0284 (16)0.0364 (18)0.0325 (17)0.0007 (13)−0.0002 (13)0.0021 (15)
C40.0354 (17)0.0359 (19)0.0350 (18)0.0014 (14)0.0032 (14)0.0034 (15)
C50.042 (2)0.040 (2)0.045 (2)0.0049 (16)0.0004 (16)0.0116 (17)
C60.042 (2)0.057 (2)0.0379 (19)−0.0005 (18)−0.0116 (16)0.0134 (18)
C70.046 (2)0.050 (2)0.0356 (19)−0.0080 (17)−0.0036 (16)0.0003 (16)
C80.069 (3)0.033 (2)0.068 (3)0.0084 (19)0.000 (2)0.001 (2)
C90.052 (2)0.039 (2)0.048 (2)0.0036 (17)0.0075 (17)0.0036 (17)
C100.067 (3)0.036 (2)0.068 (3)0.0133 (19)0.020 (2)0.004 (2)
C110.051 (2)0.046 (2)0.071 (3)0.0207 (18)0.012 (2)0.019 (2)
C120.040 (2)0.050 (2)0.053 (2)0.0131 (17)0.0121 (17)0.0177 (19)
C130.0325 (17)0.041 (2)0.0352 (17)0.0056 (14)0.0064 (14)0.0131 (15)
C140.0327 (17)0.041 (2)0.0346 (17)0.0029 (14)0.0062 (14)0.0078 (15)
C150.0359 (19)0.057 (2)0.041 (2)−0.0003 (17)0.0000 (15)0.0052 (18)
C160.046 (2)0.063 (3)0.046 (2)−0.0093 (19)−0.0073 (18)−0.002 (2)
C170.055 (2)0.046 (2)0.050 (2)−0.0061 (18)0.0014 (18)−0.0046 (18)
C180.046 (2)0.037 (2)0.043 (2)0.0028 (16)0.0035 (16)0.0057 (16)
C190.040 (2)0.071 (3)0.060 (3)0.019 (2)−0.0037 (18)0.018 (2)
C200.040 (2)0.078 (3)0.053 (2)0.007 (2)−0.0105 (18)0.007 (2)

Geometric parameters (Å, °)

Cu1—O21.908 (2)C5—H50.9300
Cu1—O11.927 (2)C6—C71.349 (5)
Cu1—N21.995 (3)C6—H60.9300
Cu1—N12.022 (3)C7—H70.9300
Cu1—O42.510 (3)C8—H8A0.9600
Cl1—O6'1.319 (10)C8—H8B0.9600
Cl1—O61.342 (11)C8—H8C0.9600
Cl1—O41.405 (3)C9—C101.406 (5)
Cl1—O7'1.424 (11)C9—H90.9300
Cl1—O5'1.429 (8)C10—C111.355 (6)
Cl1—O71.442 (9)C10—H100.9300
Cl1—O51.465 (8)C11—C121.402 (6)
N1—C91.322 (5)C11—H110.9300
N1—C131.357 (4)C12—C131.401 (5)
N2—C181.329 (4)C12—C191.436 (6)
N2—C141.350 (4)C13—C141.432 (5)
O1—C11.246 (4)C14—C151.402 (5)
O2—C31.305 (4)C15—C161.404 (6)
O3—C41.368 (4)C15—C201.431 (5)
O3—C81.417 (4)C16—C171.358 (5)
C1—C21.419 (5)C16—H160.9300
C1—H10.9300C17—C181.393 (5)
C2—C71.418 (5)C17—H170.9300
C2—C31.422 (5)C18—H180.9300
C3—C41.420 (5)C19—C201.337 (6)
C4—C51.372 (5)C19—H190.9300
C5—C61.395 (5)C20—H200.9300
O2—Cu1—O193.25 (9)C5—C4—C3120.6 (3)
O2—Cu1—N293.76 (10)C4—C5—C6121.1 (3)
O1—Cu1—N2172.89 (10)C4—C5—H5119.4
O2—Cu1—N1175.03 (10)C6—C5—H5119.4
O1—Cu1—N190.98 (11)C7—C6—C5120.5 (3)
N2—Cu1—N182.08 (11)C7—C6—H6119.7
O2—Cu1—O494.16 (11)C5—C6—H6119.7
O1—Cu1—O488.20 (11)C6—C7—C2120.1 (3)
N2—Cu1—O490.07 (12)C6—C7—H7119.9
N1—Cu1—O488.58 (11)C2—C7—H7119.9
O6'—Cl1—O6122.8 (8)O3—C8—H8A109.5
O6'—Cl1—O4119.1 (5)O3—C8—H8B109.5
O6—Cl1—O4117.9 (6)H8A—C8—H8B109.5
O6'—Cl1—O7'114.9 (8)O3—C8—H8C109.5
O6—Cl1—O7'40.6 (6)H8A—C8—H8C109.5
O4—Cl1—O7'106.8 (5)H8B—C8—H8C109.5
O6'—Cl1—O5'110.0 (7)N1—C9—C10122.1 (4)
O6—Cl1—O5'63.8 (8)N1—C9—H9118.9
O4—Cl1—O5'100.1 (5)C10—C9—H9118.9
O7'—Cl1—O5'104.0 (8)C11—C10—C9119.6 (4)
O6'—Cl1—O746.6 (6)C11—C10—H10120.2
O6—Cl1—O7114.0 (8)C9—C10—H10120.2
O4—Cl1—O7111.2 (4)C10—C11—C12120.1 (3)
O7'—Cl1—O7141.9 (6)C10—C11—H11119.9
O5'—Cl1—O766.6 (6)C12—C11—H11119.9
O6'—Cl1—O552.7 (6)C13—C12—C11116.6 (4)
O6—Cl1—O5111.5 (7)C13—C12—C19118.0 (4)
O4—Cl1—O5100.8 (4)C11—C12—C19125.3 (4)
O7'—Cl1—O576.5 (7)N1—C13—C12123.4 (3)
O5'—Cl1—O5157.9 (5)N1—C13—C14116.3 (3)
O7—Cl1—O599.1 (7)C12—C13—C14120.3 (3)
C9—N1—C13118.2 (3)N2—C14—C15123.2 (3)
C9—N1—Cu1129.9 (3)N2—C14—C13116.6 (3)
C13—N1—Cu1111.9 (2)C15—C14—C13120.2 (3)
C18—N2—C14118.7 (3)C14—C15—C16116.6 (3)
C18—N2—Cu1128.4 (2)C14—C15—C20118.1 (4)
C14—N2—Cu1112.9 (2)C16—C15—C20125.4 (4)
C1—O1—Cu1123.8 (2)C17—C16—C15119.8 (3)
C3—O2—Cu1123.7 (2)C17—C16—H16120.1
C4—O3—C8116.3 (3)C15—C16—H16120.1
Cl1—O4—Cu1133.3 (2)C16—C17—C18120.2 (4)
O1—C1—C2127.5 (3)C16—C17—H17119.9
O1—C1—H1116.3C18—C17—H17119.9
C2—C1—H1116.3N2—C18—C17121.6 (3)
C7—C2—C1117.5 (3)N2—C18—H18119.2
C7—C2—C3120.4 (3)C17—C18—H18119.2
C1—C2—C3122.1 (3)C20—C19—C12121.5 (4)
O2—C3—C4118.8 (3)C20—C19—H19119.3
O2—C3—C2123.9 (3)C12—C19—H19119.3
C4—C3—C2117.2 (3)C19—C20—C15121.9 (4)
O3—C4—C5124.9 (3)C19—C20—H20119.0
O3—C4—C3114.6 (3)C15—C20—H20119.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2393).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Janzen, D. E., Wang, X. L., Carr, P. W. & Mann, K. R. (2004). Inorg. Chim. Acta, 357, 3317–3324.
  • Lin, Z.-D. & Zeng, W. (2006). Acta Cryst. E62, m1074–m1076.
  • Plieger, P. G., Downard, A. J., Moubaraki, B., Murray, K. S. & Booker, S. (2004). Dalton Trans. pp. 2157–2165. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Youngme, S., Phuengphai, P., Pakawatchai, C., van Albada, G. A., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chem. Commun.8, 335–338.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography