PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o934.
Published online 2008 April 30. doi:  10.1107/S1600536808011549
PMCID: PMC2961255

3-Hydr­oxy-7,8-dimethoxy­quinolin-2(1H)-one

Abstract

In the crystal structure of the title compound, C11H11NO4, intra­molecular O—H(...)O hydrogen bonding results in the formation of a planar five-membered ring, which is nearly coplanar with the quinoline group. Inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Beak (1977 [triangle]); Nimlos et al. (1987 [triangle]); Rajnikant et al. (2002 [triangle]); Johnson (1996 [triangle]). For related literature, see: Lin et al. (2000 [triangle]); Song et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o934-scheme1.jpg

Experimental

Crystal data

  • C11H11NO4
  • M r = 221.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o934-efi1.jpg
  • a = 4.9655 (16) Å
  • b = 14.084 (5) Å
  • c = 14.888 (5) Å
  • β = 96.208 (6)°
  • V = 1035.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 294 (2) K
  • 0.60 × 0.37 × 0.31 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.937, T max = 0.967
  • 6788 measured reflections
  • 2228 independent reflections
  • 1761 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.174
  • S = 1.08
  • 2228 reflections
  • 150 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 1999 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011549/hk2455sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011549/hk2455Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the National Science Foundation of China (grant No. 20072058), the 863 Foundation of China (grant No. 2003 A A624010) and Guangdong Pharmaceutical University is gratefully acknowledged.

supplementary crystallographic information

Comment

Quinolin-2(1H)-ones can exist in both the lactam and lactim forms (Beak, 1977; Nimlos et al., 1987; Rajnikant et al., 2002). The tautomeric equilibrium of lactam-lactim attracts attention owing to its chemical, biological and theoretical importantce (Johnson, 1996). The title compound, (I), which is a part of the marine natural compound penicilliazine (Lin et al., 2000), was synthesized and characterized by our research group toward the natural product total synthesis. As part of our ongoing studies, we report herein the crystal structure of (I).

The molecule of the title compound, (I), (Fig. 1) adopts a bicyclic lactam-form with one hydroxy and two methoxy groups attached to atoms C2, C8 and C9, respectively. Rings A (N1/C1-C5) and B (C4-C9) are, of course, planar and the dihedral angle between them is A/B = 2.18 (3)°. The intramolecular O-H···O hydrogen bond (Table 1) results in the formation of a planar five-membered ring C (O1/O2/H2/C1/C2). Ring C is oriented with respect to the adjacent rings A and B at dihedral angles of A/C = 1.99 (3)° and B/C = 3.96 (3)°. So, rings A, B and C are nearly coplanar.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound, (I), was prepared according to our reported procedure (Song et al., 2006). Suitable crystals were obtained by recrystallization from chloroform/ethyl acetate (1:1) solution (m.p. 436-437 K). Spectroscopic analysis: IR (KBr, νcm-1): 3442, 3169, 1665, 1638, 1116; 1H NMR (CDCl3, δ, p.p.m.): 7.14–7.17(d, 1H, J = 9.0 Hz), 7.07(s, 1H), 6.85-6.88 (d, 1H, J = 9.0 Hz), 6.61(br, OH),3.97 (s, 3H), 3.93 (s, 3H); 13C NMR (CDCl3, δ, p.p.m.): 159.0, 150.2, 143.7, 134.2,127.2,121.1,115.7,112.2, 108.8,60.6,56.0; analysis, calculated for C11H11N1O4: C 59.73, H 5.01, N 6.33%; found: C 59.98, H 5.23, N 6.14%.

Refinement

H atom (for NH) was located in a difference syntheses and refined [N-H = 0.90 (3) Å and Uiso(H) = 0.068 (7) Å2]. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H, and x = 1.5 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C11H11NO4F000 = 464
Mr = 221.21Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 886 reflections
a = 4.9655 (16) Åθ = 3.1–27.1º
b = 14.084 (5) ŵ = 0.11 mm1
c = 14.888 (5) ÅT = 294 (2) K
β = 96.208 (6)ºBlock, colorless
V = 1035.1 (6) Å30.60 × 0.37 × 0.31 mm
Z = 4

Data collection

Bruker CCD area-detector diffractometer2228 independent reflections
Radiation source: fine-focus sealed tube1761 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.015
T = 294(2) Kθmax = 27.1º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→5
Tmin = 0.937, Tmax = 0.967k = −17→15
6788 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.174  w = 1/[σ2(Fo2) + (0.0907P)2 + 0.3738P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2228 reflectionsΔρmax = 0.50 e Å3
150 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.1615 (3)0.39255 (11)1.01266 (11)0.0616 (5)
O2−0.2273 (3)0.20136 (9)0.97741 (9)0.0514 (4)
H2−0.28160.23271.01820.077*
O30.6647 (4)0.48962 (12)0.67193 (12)0.0681 (5)
O40.3678 (3)0.54717 (9)0.80367 (10)0.0498 (4)
N10.1136 (3)0.41905 (11)0.90243 (11)0.0439 (4)
H10.119 (5)0.481 (2)0.9155 (17)0.068 (7)*
C1−0.0380 (4)0.36225 (14)0.95063 (13)0.0458 (5)
C2−0.0452 (4)0.26212 (14)0.92587 (13)0.0483 (5)
C30.0957 (4)0.22783 (14)0.86147 (14)0.0500 (5)
H3A0.09120.16320.84880.060*
C40.2532 (4)0.28997 (13)0.81204 (13)0.0442 (4)
C50.2543 (4)0.38754 (13)0.83327 (12)0.0404 (4)
C60.4035 (5)0.26022 (15)0.74343 (15)0.0535 (5)
H6A0.40790.19600.72900.064*
C70.5456 (5)0.32376 (16)0.69650 (15)0.0544 (5)
H7A0.64620.30210.65140.065*
C80.5392 (4)0.42049 (15)0.71632 (14)0.0490 (5)
C90.3942 (4)0.45222 (12)0.78474 (13)0.0427 (4)
C100.6032 (5)0.58783 (16)0.85291 (18)0.0617 (6)
H10A0.57110.65380.86380.093*
H10B0.75470.58160.81840.093*
H10C0.64160.55540.90950.093*
C110.8222 (6)0.4614 (2)0.60194 (19)0.0789 (8)
H11A0.89860.51660.57660.118*
H11B0.70880.42860.55570.118*
H11C0.96530.42000.62650.118*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0712 (10)0.0546 (9)0.0639 (9)−0.0102 (7)0.0302 (8)−0.0133 (7)
O20.0809 (10)0.0349 (7)0.0397 (7)−0.0015 (6)0.0119 (6)−0.0009 (5)
O30.0819 (12)0.0579 (10)0.0713 (10)0.0009 (8)0.0395 (9)0.0048 (7)
O40.0549 (8)0.0341 (7)0.0615 (8)0.0020 (6)0.0117 (6)−0.0013 (6)
N10.0498 (9)0.0337 (8)0.0496 (9)−0.0009 (6)0.0118 (7)−0.0058 (6)
C10.0491 (10)0.0431 (10)0.0463 (10)−0.0035 (8)0.0096 (8)−0.0056 (8)
C20.0559 (12)0.0403 (10)0.0488 (10)−0.0069 (8)0.0063 (9)0.0001 (8)
C30.0620 (12)0.0332 (9)0.0552 (11)−0.0018 (8)0.0076 (9)−0.0039 (8)
C40.0489 (10)0.0360 (9)0.0480 (10)0.0022 (8)0.0058 (8)−0.0042 (7)
C50.0415 (9)0.0371 (9)0.0427 (9)0.0037 (7)0.0045 (7)−0.0038 (7)
C60.0606 (13)0.0398 (10)0.0611 (12)0.0061 (9)0.0115 (10)−0.0110 (9)
C70.0580 (12)0.0521 (12)0.0557 (11)0.0083 (9)0.0177 (9)−0.0081 (9)
C80.0507 (11)0.0471 (11)0.0507 (11)0.0033 (8)0.0129 (9)0.0029 (8)
C90.0452 (10)0.0353 (9)0.0480 (10)0.0039 (7)0.0061 (8)−0.0005 (7)
C100.0622 (14)0.0469 (11)0.0779 (15)−0.0108 (10)0.0157 (11)−0.0078 (10)
C110.0848 (18)0.0863 (19)0.0728 (16)−0.0045 (15)0.0419 (14)0.0001 (14)

Geometric parameters (Å, °)

O2—H20.8200C5—C41.410 (3)
O3—C111.425 (3)C6—C71.376 (3)
O4—C91.376 (2)C6—C41.393 (3)
O4—C101.430 (3)C6—H6A0.9300
N1—C11.356 (3)C7—H7A0.9300
N1—C51.379 (2)C8—O31.365 (3)
N1—H10.90 (3)C8—C91.384 (3)
C1—O11.238 (2)C8—C71.395 (3)
C1—C21.457 (3)C10—H10A0.9600
C2—O21.513 (2)C10—H10B0.9600
C3—C21.337 (3)C10—H10C0.9600
C3—C41.430 (3)C11—H11A0.9600
C3—H3A0.9300C11—H11B0.9600
C5—C91.394 (3)C11—H11C0.9600
C2—O2—H2109.5C4—C6—H6A119.3
C8—O3—C11118.1 (2)C6—C7—C8120.21 (19)
C9—O4—C10113.78 (16)C6—C7—H7A119.9
C1—N1—C5124.09 (16)C8—C7—H7A119.9
C1—N1—H1117.9 (17)O3—C8—C9115.29 (18)
C5—N1—H1118.0 (17)O3—C8—C7124.92 (19)
O1—C1—N1122.64 (18)C9—C8—C7119.78 (19)
O1—C1—C2121.43 (18)O4—C9—C8122.25 (17)
N1—C1—C2115.93 (17)O4—C9—C5117.72 (17)
C3—C2—C1122.03 (18)C8—C9—C5119.91 (17)
C3—C2—O2123.18 (17)O4—C10—H10A109.5
C1—C2—O2114.78 (17)O4—C10—H10B109.5
C2—C3—C4120.40 (18)H10A—C10—H10B109.5
C2—C3—H3A119.8O4—C10—H10C109.5
C4—C3—H3A119.8H10A—C10—H10C109.5
C6—C4—C5117.91 (18)H10B—C10—H10C109.5
C6—C4—C3124.03 (18)O3—C11—H11A109.5
C5—C4—C3118.06 (17)O3—C11—H11B109.5
N1—C5—C9119.87 (16)H11A—C11—H11B109.5
N1—C5—C4119.41 (17)O3—C11—H11C109.5
C9—C5—C4120.72 (17)H11A—C11—H11C109.5
C7—C6—C4121.43 (18)H11B—C11—H11C109.5
C7—C6—H6A119.3
C10—O4—C9—C8−77.3 (2)C9—C5—C4—C3−177.13 (18)
C10—O4—C9—C5106.8 (2)N1—C5—C9—O4−5.1 (3)
C5—N1—C1—O1179.73 (19)C4—C5—C9—O4174.46 (17)
C5—N1—C1—C20.4 (3)N1—C5—C9—C8178.93 (17)
C1—N1—C5—C9176.93 (18)C4—C5—C9—C8−1.6 (3)
C1—N1—C5—C4−2.6 (3)C7—C6—C4—C5−1.1 (3)
O1—C1—C2—C3−177.3 (2)C7—C6—C4—C3178.2 (2)
N1—C1—C2—C32.0 (3)C4—C6—C7—C8−0.7 (3)
O1—C1—C2—O23.7 (3)C9—C8—O3—C11178.7 (2)
N1—C1—C2—O2−176.97 (16)C7—C8—O3—C11−2.2 (4)
C4—C3—C2—C1−2.1 (3)O3—C8—C7—C6−177.6 (2)
C4—C3—C2—O2176.75 (17)C9—C8—C7—C61.4 (3)
C2—C3—C4—C6−179.4 (2)O3—C8—C9—O43.0 (3)
C2—C3—C4—C5−0.1 (3)C7—C8—C9—O4−176.09 (19)
N1—C5—C4—C6−178.29 (18)O3—C8—C9—C5178.85 (17)
C9—C5—C4—C62.2 (3)C7—C8—C9—C5−0.3 (3)
N1—C5—C4—C32.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (3)2.07 (3)2.938 (2)161 (2)
O2—H2···O10.822.332.756 (2)113

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2455).

References

  • Beak, P. (1977). Acc. Chem. Res.10, 186–192.
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnson, C. D. (1996). Comprehesive Heterocyclic Chemistry II, Vol. 5, edited by A. R. Katritzky, C. W Rees & E. F. V. Scriven, pp. 15–18. New York: Pergamon.
  • Lin, Y. C., Shao, Z., Jiang, G., Zhou, S., Cai, J., Vrijmoedand, L. L. P. & Jones, E. B. G. (2000). Tetrahedron, 56, 9607–9609.
  • Nimlos, M. R., Kelley, D. F. & Bernstein, E. R. (1987). J. Phys. Chem.91, 6610–6614.
  • Rajnikant, G. V. K., Deshmukh, M. B. & Varghese, B. (2002). Dinesh Crystallogr. Rep.47, 449–496.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, J., Lin, Y. C. & Chan, W. L. (2006). Heterocycles, 68, 1185–1190.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography