PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o814.
Published online 2008 April 10. doi:  10.1107/S1600536808008581
PMCID: PMC2961252

(E)-3-(4-Hydr­oxy-3-methoxy­benzyl­idene)-4-(4-hydroxy­phen­yl)pyrrolidin-2-one

Abstract

The title compound, C18H17NO4, was isolated from an ethanol extract of Ophiopogon japonicus. The dihedral angle between the 4-hydroxy-3-methoxyphenyl ring and the pyrrolidine ring is 17.4 (1)°. The 4-hydroxyphenyl ring makes a dihedral angle of 69.74 (6)° with the least-squares plane through the 4-hydroxy-3-methoxyphenyl ring and the pyrrolidine ring. The conformation of the pyrrolidine fragment is similar to a T-form. The crystal structure is stabilized by inter­molecular N—H(...)O and O—H(...)O hydrogen bonds.

Related literature

For the chemical components and pharmacological properties of the plant Ophiopogon japonicus, see: Anh et al. (2003 [triangle]); Kou et al. (2005 [triangle]) & Yu (2007 [triangle]). For related literature, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o814-scheme1.jpg

Experimental

Crystal data

  • C18H17NO4
  • M r = 311.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o814-efi3.jpg
  • a = 6.388 (1) Å
  • b = 14.520 (2) Å
  • c = 16.880 (2) Å
  • β = 96.514 (2)°
  • V = 1555.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.47 × 0.42 × 0.35 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.954, T max = 0.969
  • 9225 measured reflections
  • 3387 independent reflections
  • 1756 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.137
  • S = 1.02
  • 3387 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT; data reduction: SAINT (Bruker, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008581/lx2053sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008581/lx2053Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (grant No. 30672603 to Dr Bo-Yang Yu).

supplementary crystallographic information

Comment

The plant of Ophiopogon japonicus (L. f.) Ker-Gawl.(Liliaceae) is widely distributed in South-east Asia, especially in most areaof China, and its tuber root as a famous traditional medicine are widely usedin China to cure acute and chronic inflammation and cardiovascular diseasesincluding thrombotic diseases for thousands of years (Yu, 2007; Kou, et al., 2005). Chemical studies have shown that this plant includes steroidal saponins, homoisoflavonoids andmonoterpene glycosides etc (Anh, et al., 2003). Herein we report the molecular and crystal structure of the title compound (Fig.1), which was isolated from an ethanol extract of the plant of Ophiopogon japonicus.

The main components of the title compound were two aromatic rings, A(C5—C10) and B(C12—C17) and a pyrrolidine ring C(N1/C1—C4) as shown in Fig. 1. Fig. 2 presents the packing diagram of the title compound. Paired molecules at the inversional position assembled via supromolecular sython R22(8) (Bernstein, et al., 1995) which consist of hydrogen bonds N1—H1···O1i, O2—H2···O1ii and O4—H4···O2iii (Symmetry code as in Fig. 2.).

Experimental

Material from the dried subterranean parts of Ophiopogon japonicus (L. f.) Ker-Gawl.(Liliaceae) (40 kg),collected from Sichuan Province in China, was extracted with hot 60% EtOH (3×3 h) under refluxing. The concentrated extract was subjected to D-101 macroporous resin column chromatography eluted successively with EtOH-H2O(0:100, 30:70, 90:100) to give three fractions (I-III). The concentratedresidue of fraction III (EtOH-H2O, 90:10) (330 g) was further dissolved in water, and extractedwith EtOAc and n-BuOH successively. The EtOAc extract (107 g) was loaded onto a silica-gel column (200–300 mesh, 600 g) eluted with a gradientof 100% CHCl3 to CHCl3—MeOH (50:50) to give 18 fractions,which was pooled by common thin-layer chromatography characteristics. Fraction9 was subjected to repeated chromatography over silica-gel and Sephadex LH-20columns, gave compound (I) (yield 6 mg, m.p. 518 K). Prismatic crystalssuitable for X-ray studies were grown from MeOH by slow evaporation at roomtemperature.

Refinement

(type here to add refinement details)

Figures

Fig. 1.
A drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
N—H···O and O—H···O hydrogen bond interactions (dotted lines) in the title compound. [Symmetry code: (i) -x, -y+1, -z+1; (ii) -x, y+1/2, -z+1/2; (iii) -x+1, -y+1, -z.]

Crystal data

C18H17NO4F000 = 656
Mr = 311.33Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1858 reflections
a = 6.388 (1) Åθ = 2.4–23.1º
b = 14.520 (2) ŵ = 0.09 mm1
c = 16.880 (2) ÅT = 298 (2) K
β = 96.514 (2)ºBlock, colourless
V = 1555.6 (4) Å30.47 × 0.42 × 0.35 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3387 independent reflections
Radiation source: fine-focus sealed tube1756 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
Detector resolution: 10.0 pixels mm-1θmax = 27.0º
T = 298(2) Kθmin = 1.9º
[var phi] and ω scansh = −8→7
Absorption correction: multi-scan(SADABS; Sheldrick, 1999)k = −13→18
Tmin = 0.954, Tmax = 0.969l = −20→21
9225 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.137  w = 1/[σ2(Fo2) + (0.0524P)2 + 0.295P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.000
3387 reflectionsΔρmax = 0.22 e Å3
209 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N0.1955 (3)0.50621 (13)0.43227 (10)0.0407 (5)
H10.16940.53040.47660.049*
O1−0.1146 (2)0.42888 (11)0.40852 (9)0.0482 (4)
O20.3756 (3)0.78432 (11)0.09921 (11)0.0678 (6)
H20.26210.81120.09210.102*
O30.5094 (3)0.35253 (12)0.04340 (10)0.0600 (5)
O40.2796 (3)0.20997 (13)−0.01836 (11)0.0762 (6)
H40.39570.2277−0.02830.114*
C10.0580 (4)0.45390 (14)0.38830 (13)0.0372 (5)
C20.1463 (3)0.43166 (15)0.31329 (12)0.0358 (5)
C30.3493 (3)0.48408 (15)0.31322 (12)0.0382 (5)
H30.46100.44080.30310.046*
C40.3928 (4)0.5193 (2)0.39970 (13)0.0536 (7)
H4A0.50450.48400.42940.064*
H4B0.43250.58380.40080.064*
C50.3457 (3)0.56253 (15)0.25340 (12)0.0365 (5)
C60.1668 (4)0.59272 (15)0.20783 (14)0.0433 (6)
H60.03950.56310.21210.052*
C70.1720 (4)0.66655 (16)0.15552 (14)0.0472 (6)
H70.04950.68580.12500.057*
C80.3594 (4)0.71071 (16)0.14939 (14)0.0476 (6)
C90.5397 (4)0.68061 (18)0.19335 (17)0.0562 (7)
H90.66710.70980.18840.067*
C100.5334 (4)0.60767 (17)0.24462 (15)0.0523 (7)
H100.65720.58800.27410.063*
C110.0515 (4)0.37125 (15)0.26114 (13)0.0401 (6)
H11−0.07710.34930.27410.048*
C120.1159 (4)0.33400 (15)0.18741 (13)0.0396 (6)
C130.2897 (4)0.36572 (15)0.15170 (13)0.0419 (6)
H130.36900.41450.17470.050*
C140.3449 (4)0.32596 (16)0.08338 (13)0.0431 (6)
C150.2293 (4)0.25225 (17)0.04909 (14)0.0507 (7)
C160.0567 (4)0.22166 (18)0.08261 (15)0.0619 (8)
H16−0.02290.17320.05910.074*
C17−0.0002 (4)0.26206 (17)0.15097 (14)0.0536 (7)
H17−0.11820.24070.17290.064*
C180.6343 (4)0.4276 (2)0.07462 (17)0.0672 (8)
H18A0.54820.48180.07490.101*
H18B0.74570.43820.04200.101*
H18C0.69370.41370.12810.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N0.0424 (11)0.0505 (12)0.0299 (10)0.0051 (9)0.0069 (8)−0.0053 (9)
O10.0476 (10)0.0547 (11)0.0451 (10)−0.0041 (8)0.0177 (8)−0.0079 (8)
O20.0807 (14)0.0491 (11)0.0812 (14)0.0105 (10)0.0418 (11)0.0189 (10)
O30.0623 (11)0.0676 (12)0.0549 (11)−0.0166 (10)0.0276 (9)−0.0155 (9)
O40.0992 (15)0.0755 (13)0.0612 (12)−0.0284 (11)0.0411 (11)−0.0326 (10)
C10.0417 (13)0.0371 (13)0.0333 (12)0.0044 (11)0.0064 (10)−0.0001 (10)
C20.0380 (12)0.0397 (13)0.0300 (12)0.0038 (10)0.0053 (10)0.0047 (10)
C30.0396 (13)0.0456 (14)0.0298 (12)0.0048 (11)0.0053 (10)−0.0016 (10)
C40.0417 (14)0.085 (2)0.0340 (14)−0.0061 (13)0.0032 (11)−0.0047 (13)
C50.0387 (13)0.0396 (13)0.0319 (12)−0.0006 (10)0.0071 (10)−0.0053 (10)
C60.0380 (13)0.0444 (14)0.0483 (15)−0.0005 (11)0.0087 (11)0.0033 (11)
C70.0463 (15)0.0490 (15)0.0466 (15)0.0082 (12)0.0070 (12)0.0062 (12)
C80.0598 (17)0.0367 (14)0.0506 (15)0.0017 (12)0.0251 (13)0.0006 (11)
C90.0492 (16)0.0550 (17)0.0660 (18)−0.0134 (13)0.0137 (14)0.0001 (14)
C100.0410 (15)0.0613 (17)0.0540 (16)−0.0058 (13)0.0026 (12)0.0039 (13)
C110.0427 (14)0.0413 (13)0.0373 (13)−0.0026 (11)0.0090 (11)0.0029 (10)
C120.0480 (14)0.0402 (13)0.0314 (12)−0.0016 (11)0.0077 (10)−0.0009 (10)
C130.0490 (14)0.0412 (13)0.0361 (13)−0.0059 (11)0.0073 (11)−0.0052 (10)
C140.0497 (14)0.0435 (14)0.0376 (13)−0.0030 (11)0.0117 (11)−0.0006 (11)
C150.0682 (18)0.0477 (15)0.0384 (14)−0.0065 (13)0.0164 (13)−0.0084 (11)
C160.079 (2)0.0590 (18)0.0512 (16)−0.0282 (15)0.0212 (14)−0.0149 (13)
C170.0654 (18)0.0560 (16)0.0424 (15)−0.0190 (13)0.0198 (13)−0.0089 (12)
C180.0575 (18)0.079 (2)0.0671 (19)−0.0173 (16)0.0167 (15)−0.0032 (16)

Geometric parameters (Å, °)

N—C11.323 (3)C6—H60.9300
N—C41.444 (3)C7—C81.372 (3)
N—H10.8600C7—H70.9300
O1—C11.245 (2)C8—C91.369 (3)
O2—C81.375 (3)C9—C101.371 (3)
O2—H20.8200C9—H90.9300
O3—C141.367 (3)C10—H100.9300
O3—C181.417 (3)C11—C121.458 (3)
O4—C151.364 (3)C11—H110.9300
O4—H40.8200C12—C171.384 (3)
C1—C21.479 (3)C12—C131.400 (3)
C2—C111.338 (3)C13—C141.371 (3)
C2—C31.504 (3)C13—H130.9300
C3—C51.521 (3)C14—C151.389 (3)
C3—C41.542 (3)C15—C161.369 (3)
C3—H30.9800C16—C171.379 (3)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—H170.9300
C5—C61.375 (3)C18—H18A0.9600
C5—C101.389 (3)C18—H18B0.9600
C6—C71.392 (3)C18—H18C0.9600
C1—N—C4114.5 (2)C7—C8—O2122.5 (2)
C1—N—H1122.8C8—C9—C10120.4 (2)
C4—N—H1122.8C8—C9—H9119.8
C8—O2—H2109.5C10—C9—H9119.8
C14—O3—C18117.7 (2)C9—C10—C5121.3 (2)
C15—O4—H4109.5C9—C10—H10119.4
O1—C1—N124.4 (2)C5—C10—H10119.4
O1—C1—C2127.4 (2)C2—C11—C12130.9 (2)
N—C1—C2108.20 (19)C2—C11—H11114.6
C11—C2—C1121.2 (2)C12—C11—H11114.6
C11—C2—C3131.1 (2)C17—C12—C13117.9 (2)
C1—C2—C3107.6 (2)C17—C12—C11118.1 (2)
C2—C3—C5115.6 (2)C13—C12—C11124.0 (2)
C2—C3—C4103.3 (2)C14—C13—C12121.0 (2)
C5—C3—C4111.6 (2)C14—C13—H13119.5
C2—C3—H3108.7C12—C13—H13119.5
C5—C3—H3108.7O3—C14—C13125.6 (2)
C4—C3—H3108.7O3—C14—C15114.4 (2)
N—C4—C3104.2 (2)C13—C14—C15120.0 (2)
N—C4—H4A110.9O4—C15—C16118.4 (2)
C3—C4—H4A110.9O4—C15—C14122.0 (2)
N—C4—H4B110.9C16—C15—C14119.5 (2)
C3—C4—H4B110.9C15—C16—C17120.6 (2)
H4A—C4—H4B108.9C15—C16—H16119.7
C6—C5—C10117.5 (2)C17—C16—H16119.7
C6—C5—C3124.0 (2)C16—C17—C12120.9 (2)
C10—C5—C3118.4 (2)C16—C17—H17119.5
C5—C6—C7121.5 (2)C12—C17—H17119.5
C5—C6—H6119.2O3—C18—H18A109.5
C7—C6—H6119.2O3—C18—H18B109.5
C8—C7—C6119.4 (2)H18A—C18—H18B109.5
C8—C7—H7120.3O3—C18—H18C109.5
C6—C7—H7120.3H18A—C18—H18C109.5
C9—C8—C7119.8 (2)H18B—C18—H18C109.5
C9—C8—O2117.7 (2)
C4—N—C1—O1174.6 (2)O2—C8—C9—C10179.8 (2)
C4—N—C1—C2−5.3 (3)C8—C9—C10—C50.0 (4)
O1—C1—C2—C11−7.4 (4)C6—C5—C10—C91.0 (3)
N—C1—C2—C11172.5 (2)C3—C5—C10—C9−178.1 (2)
O1—C1—C2—C3175.2 (2)C1—C2—C11—C12−175.0 (2)
N—C1—C2—C3−4.9 (2)C3—C2—C11—C121.8 (4)
C11—C2—C3—C572.8 (3)C2—C11—C12—C17170.9 (2)
C1—C2—C3—C5−110.1 (2)C2—C11—C12—C13−8.2 (4)
C11—C2—C3—C4−165.1 (2)C17—C12—C13—C14−0.9 (4)
C1—C2—C3—C412.0 (2)C11—C12—C13—C14178.3 (2)
C1—N—C4—C312.9 (3)C18—O3—C14—C13−0.1 (4)
C2—C3—C4—N−14.5 (2)C18—O3—C14—C15179.8 (2)
C5—C3—C4—N110.3 (2)C12—C13—C14—O3179.0 (2)
C2—C3—C5—C67.3 (3)C12—C13—C14—C15−0.8 (4)
C4—C3—C5—C6−110.3 (2)O3—C14—C15—O40.8 (4)
C2—C3—C5—C10−173.59 (19)C13—C14—C15—O4−179.3 (2)
C4—C3—C5—C1068.8 (2)O3—C14—C15—C16−177.9 (2)
C10—C5—C6—C7−0.9 (3)C13—C14—C15—C162.0 (4)
C3—C5—C6—C7178.2 (2)O4—C15—C16—C17179.8 (2)
C5—C6—C7—C8−0.3 (3)C14—C15—C16—C17−1.5 (4)
C6—C7—C8—C91.4 (4)C15—C16—C17—C12−0.3 (4)
C6—C7—C8—O2−179.7 (2)C13—C12—C17—C161.4 (4)
C7—C8—C9—C10−1.2 (4)C11—C12—C17—C16−177.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H1···O1i0.862.092.948 (2)172
O2—H2···O1ii0.821.952.675 (2)147
O4—H4···O2iii0.822.002.721 (2)147

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2053).

References

  • Anh, N. T. H., Sung, T. V., Porzel, A., Frankeb, K. & Wessjohann, L. A. (2003). Phytochemistry, 62, 1153–1158. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kou, J. P., Yu, B. Y. & Xu, Q. (2005). Vasc. Pharmcol, 43, 157–163. [PubMed]
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yu, B. Y. (2007). Chin. J. Nat. Med. , 43, 10–14.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography