PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o795.
Published online 2008 April 4. doi:  10.1107/S1600536808008465
PMCID: PMC2961251

2-(2,4-Dichloro­phen­yl)-3-[5-(4-methoxy­phen­yl)-1,3,4-thia­diazol-2-yl]-1,3-thia­zolidin-4-one

Abstract

In the mol­ecule of the title compound, C18H13Cl2N3O2S2, the thia­zolidinone ring has an envelope conformation with the S atom displaced by 0.394 (3) Å from the plane of the other ring atoms. The thia­diazole ring is oriented at a dihedral angle of 7.40 (4)° with respect to the 4-methoxy­phenyl ring. Intra­molecular C—H(...)S, C—H(...)N and C—H(...)Cl hydrogen bonds result in the formation of two planar and two non-planar five-membered rings. The planar five-membered rings are oriented at a dihedral angle of 6.23 (3)°. The 2,4-dichloro­phenyl ring is oriented at dihedral angles of 84.21 (4) and 83.55 (3)° with respect to the thia­diazole and 4-methoxy­phenyl rings, respectively. In the crystal structure, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Chen et al. (2000 [triangle]); Kidwai et al. (2000 [triangle]); Vicentini et al. (1998 [triangle]); Arun et al. (1999 [triangle]); Wasfy et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o795-scheme1.jpg

Experimental

Crystal data

  • C18H13Cl2N3O2S2
  • M r = 438.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o795-efi1.jpg
  • a = 7.1310 (14) Å
  • b = 8.1540 (16) Å
  • c = 16.671 (3) Å
  • α = 93.19 (3)°
  • β = 96.43 (3)°
  • γ = 105.89 (3)°
  • V = 922.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.60 mm−1
  • T = 298 (2) K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.841, T max = 0.943
  • 3606 measured reflections
  • 3315 independent reflections
  • 2228 reflections with I > 2σ(I)
  • R int = 0.084
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.211
  • S = 1.02
  • 3315 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008465/hk2442sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008465/hk2442Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Hua-Qin Wang of Nanjing University for carrying out the X-ray crystallographic analysis.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal activities and exhibit certain herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998). On the other hand, some of them show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996). We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), rings A (C2-C7), B (S1/N1/N2/C8/C9) and D (C13-C18) are, of course, planar. The dihedral angles between them are A/B = 7.40 (4)°, A/D = 83.55 (3)° and B/D = 84.21 (4)°. So, rings A and B are nearly coplanar. Ring C (S2/N3/C10-C12) has envelope conformation with atom S2 displaced by 0.394 (3) Å from the plane of the other ring atoms. The intramolecular C-H···S, C-H···N and C-H···Cl hydrogen bonds (Table 1) result in the formation of two planar and two non-planar five-membered rings E (S1/C4/H4A/C5/C8), F (N1/C5/C6/H6A/C8) and G (N3/C12-C14/H14A), H (Cl2/C12/H12A/C13/C18). The dihedral angle between the planar rings E and F is E/F = 6.23 (3)°, and they are oriented with respect to the adjacent rings at dihedral angles of A/E = 3.26 (4)°, A/F = 4.55 (3)°, B/E = 5.03 (4)° and B/F = 7.27 (4)°. So, they are also nearly coplanar.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

N-(2,4-dichlorobenzylidene)-5-(4-methoxyphenyl)-1,3,4-thiadiazol -2-amine (5 mmol) and mercapto-acetic acid (5 mmol) were added in toluene (50 ml). The water was removed by distillation for 5 h. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 507-509 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines
Fig. 2.
A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C18H13Cl2N3O2S2Z = 2
Mr = 438.33F000 = 448
Triclinic, P1Dx = 1.578 Mg m3
Hall symbol: -P 1Melting point = 507–509 K
a = 7.1310 (14) ÅMo Kα radiation λ = 0.71073 Å
b = 8.1540 (16) ÅCell parameters from 25 reflections
c = 16.671 (3) Åθ = 9–12º
α = 93.19 (3)ºµ = 0.60 mm1
β = 96.43 (3)ºT = 298 (2) K
γ = 105.89 (3)ºBlock, colorless
V = 922.7 (3) Å30.30 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.084
Radiation source: fine-focus sealed tubeθmax = 25.2º
Monochromator: graphiteθmin = 1.2º
T = 298(2) Kh = 0→8
ω/2θ scansk = −9→9
Absorption correction: ψ scan(North et al., 1968)l = −19→19
Tmin = 0.841, Tmax = 0.9433 standard reflections
3606 measured reflections every 200 reflections
3315 independent reflections intensity decay: none
2228 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.211  w = 1/[σ2(Fo2) + (0.1P)2 + 2P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3315 reflectionsΔρmax = 0.47 e Å3
244 parametersΔρmin = −0.61 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.3375 (3)0.6645 (2)0.50289 (13)0.0801 (6)
Cl21.1228 (2)1.20318 (19)0.40205 (10)0.0606 (5)
S10.78625 (18)0.7174 (2)0.06058 (9)0.0492 (4)
S20.5812 (2)0.9562 (2)0.33166 (11)0.0659 (5)
O11.3277 (6)0.6538 (6)−0.2389 (2)0.0616 (11)
O20.4564 (5)0.6490 (6)0.1380 (3)0.0653 (12)
N11.1375 (6)0.9039 (7)0.1050 (3)0.0535 (13)
N21.0345 (6)0.9262 (7)0.1690 (3)0.0557 (13)
N30.7229 (6)0.8433 (6)0.2094 (3)0.0488 (12)
C11.5346 (9)0.7003 (9)−0.2423 (4)0.0677 (18)
H1B1.55860.6672−0.29550.102*
H1C1.59620.6431−0.20300.102*
H1D1.58800.8220−0.23060.102*
C21.2658 (8)0.6915 (7)−0.1674 (3)0.0481 (13)
C31.0653 (8)0.6308 (9)−0.1639 (4)0.0606 (17)
H3A0.98260.5675−0.20880.073*
C40.9884 (8)0.6632 (8)−0.0956 (4)0.0556 (16)
H4A0.85380.6203−0.09440.067*
C51.1052 (7)0.7578 (7)−0.0282 (3)0.0444 (13)
C61.3061 (8)0.8127 (8)−0.0323 (4)0.0561 (16)
H6A1.39000.87210.01310.067*
C71.3842 (8)0.7822 (8)−0.1009 (4)0.0556 (16)
H7A1.51890.8237−0.10210.067*
C81.0288 (7)0.8015 (7)0.0450 (3)0.0451 (13)
C90.8518 (7)0.8390 (7)0.1524 (3)0.0457 (13)
C100.5300 (7)0.7452 (8)0.1973 (4)0.0491 (14)
C110.4280 (9)0.7736 (9)0.2684 (4)0.0670 (18)
H11A0.40380.67340.29870.080*
H11B0.30250.79280.24990.080*
C120.7992 (7)0.9486 (7)0.2846 (3)0.0463 (13)
H12A0.86931.06430.27310.056*
C130.9363 (7)0.8774 (7)0.3396 (3)0.0414 (12)
C140.9118 (8)0.7054 (7)0.3390 (4)0.0501 (14)
H14A0.80990.63220.30330.060*
C151.0296 (8)0.6354 (7)0.3883 (4)0.0518 (14)
H15A1.00950.51750.38650.062*
C161.1798 (8)0.7468 (8)0.4411 (3)0.0473 (13)
C171.2064 (7)0.9194 (7)0.4448 (3)0.0464 (13)
H17A1.30640.99270.48130.056*
C181.0853 (7)0.9832 (7)0.3946 (3)0.0425 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0617 (10)0.0839 (13)0.0961 (14)0.0270 (9)−0.0084 (9)0.0253 (10)
Cl20.0494 (8)0.0463 (8)0.0828 (11)0.0091 (6)0.0096 (7)−0.0025 (7)
S10.0242 (6)0.0653 (10)0.0511 (9)0.0018 (6)0.0043 (6)0.0040 (7)
S20.0417 (8)0.0898 (13)0.0728 (11)0.0289 (8)0.0138 (8)−0.0028 (9)
O10.044 (2)0.072 (3)0.058 (3)−0.001 (2)0.0138 (19)−0.011 (2)
O20.028 (2)0.088 (3)0.068 (3)−0.001 (2)0.0030 (19)−0.002 (3)
N10.028 (2)0.076 (3)0.051 (3)0.004 (2)0.011 (2)−0.005 (2)
N20.030 (2)0.075 (3)0.054 (3)0.002 (2)0.008 (2)−0.003 (3)
N30.026 (2)0.072 (3)0.049 (3)0.012 (2)0.012 (2)0.007 (2)
C10.045 (3)0.090 (5)0.071 (4)0.018 (3)0.026 (3)0.002 (4)
C20.038 (3)0.049 (3)0.053 (3)0.004 (2)0.009 (3)0.006 (3)
C30.033 (3)0.084 (5)0.053 (4)0.004 (3)0.000 (3)−0.010 (3)
C40.025 (3)0.076 (4)0.057 (4)0.003 (3)−0.001 (2)−0.002 (3)
C50.029 (3)0.048 (3)0.052 (3)0.003 (2)0.004 (2)0.005 (3)
C60.027 (3)0.076 (4)0.050 (3)−0.005 (3)0.001 (2)−0.009 (3)
C70.029 (3)0.075 (4)0.055 (4)0.001 (3)0.009 (3)0.001 (3)
C80.025 (2)0.052 (3)0.056 (3)0.004 (2)0.007 (2)0.011 (3)
C90.030 (3)0.056 (3)0.052 (3)0.012 (2)0.007 (2)0.011 (3)
C100.025 (3)0.061 (4)0.062 (4)0.010 (2)0.008 (3)0.012 (3)
C110.039 (3)0.092 (5)0.072 (4)0.018 (3)0.020 (3)0.008 (4)
C120.034 (3)0.054 (3)0.054 (3)0.015 (2)0.010 (2)0.006 (3)
C130.028 (2)0.048 (3)0.049 (3)0.011 (2)0.011 (2)0.000 (2)
C140.037 (3)0.052 (3)0.058 (4)0.009 (3)0.005 (3)−0.003 (3)
C150.041 (3)0.043 (3)0.071 (4)0.011 (3)0.014 (3)0.004 (3)
C160.035 (3)0.058 (4)0.053 (3)0.016 (3)0.010 (2)0.011 (3)
C170.028 (3)0.057 (4)0.050 (3)0.006 (2)0.006 (2)0.000 (3)
C180.034 (3)0.042 (3)0.054 (3)0.010 (2)0.019 (2)0.003 (2)

Geometric parameters (Å, °)

S1—C91.721 (6)C4—C51.375 (8)
S1—C81.732 (5)C4—H4A0.9300
Cl1—C161.734 (6)C5—C61.390 (7)
O1—C21.366 (7)C5—C81.456 (8)
O1—C11.427 (7)C6—C71.366 (8)
N1—C81.295 (7)C6—H6A0.9300
N1—N21.393 (6)C7—H7A0.9300
C1—H1B0.9600C10—C111.498 (8)
C1—H1C0.9600C11—H11A0.9700
C1—H1D0.9600C11—H11B0.9700
Cl2—C181.735 (5)C12—C131.517 (7)
S2—C111.788 (7)C12—H12A0.9800
S2—C121.832 (5)C13—C141.364 (8)
O2—C101.200 (7)C13—C181.381 (7)
C2—C71.358 (8)C14—C151.367 (8)
C2—C31.388 (7)C14—H14A0.9300
N2—C91.292 (7)C15—C161.383 (8)
N3—C101.375 (7)C15—H15A0.9300
N3—C91.399 (7)C16—C171.365 (8)
N3—C121.441 (7)C17—C181.360 (8)
C3—C41.362 (8)C17—H17A0.9300
C3—H3A0.9300
C9—S1—C886.0 (3)N2—C9—S1116.2 (4)
C2—O1—C1117.6 (5)N3—C9—S1124.3 (4)
C8—N1—N2113.1 (4)O2—C10—N3124.0 (5)
O1—C1—H1B109.5O2—C10—C11125.4 (5)
O1—C1—H1C109.5N3—C10—C11110.6 (5)
H1B—C1—H1C109.5C10—C11—S2108.7 (4)
O1—C1—H1D109.5C10—C11—H11A110.0
H1B—C1—H1D109.5S2—C11—H11A110.0
H1C—C1—H1D109.5C10—C11—H11B110.0
C11—S2—C1292.5 (3)S2—C11—H11B110.0
C7—C2—O1125.2 (5)H11A—C11—H11B108.3
C7—C2—C3118.7 (5)N3—C12—C13112.7 (4)
O1—C2—C3116.1 (5)N3—C12—S2104.8 (3)
C9—N2—N1110.6 (5)C13—C12—S2111.2 (4)
C10—N3—C9122.2 (5)N3—C12—H12A109.3
C10—N3—C12119.5 (4)C13—C12—H12A109.3
C9—N3—C12118.3 (4)S2—C12—H12A109.3
C4—C3—C2120.7 (5)C14—C13—C18117.3 (5)
C4—C3—H3A119.7C14—C13—C12121.2 (5)
C2—C3—H3A119.7C18—C13—C12121.5 (5)
C3—C4—C5121.5 (5)C13—C14—C15123.3 (5)
C3—C4—H4A119.2C13—C14—H14A118.4
C5—C4—H4A119.2C15—C14—H14A118.4
C4—C5—C6116.7 (5)C14—C15—C16117.3 (5)
C4—C5—C8123.5 (5)C14—C15—H15A121.4
C6—C5—C8119.8 (5)C16—C15—H15A121.4
C7—C6—C5122.1 (5)C17—C16—C15121.2 (5)
C7—C6—H6A119.0C17—C16—Cl1119.7 (4)
C5—C6—H6A119.0C15—C16—Cl1119.0 (5)
C2—C7—C6120.2 (5)C18—C17—C16119.4 (5)
C2—C7—H7A119.9C18—C17—H17A120.3
C6—C7—H7A119.9C16—C17—H17A120.3
N1—C8—C5122.9 (4)C17—C18—C13121.5 (5)
N1—C8—S1114.1 (4)C17—C18—Cl2117.8 (4)
C5—C8—S1123.0 (4)C13—C18—Cl2120.6 (4)
N2—C9—N3119.5 (5)
C1—O1—C2—C75.7 (9)C12—N3—C10—O2−177.0 (6)
C1—O1—C2—C3−174.3 (6)C9—N3—C10—C11179.2 (5)
C8—N1—N2—C9−0.6 (7)C12—N3—C10—C112.1 (7)
C7—C2—C3—C40.7 (10)O2—C10—C11—S2−169.0 (5)
O1—C2—C3—C4−179.3 (6)N3—C10—C11—S212.0 (7)
C2—C3—C4—C50.6 (10)C12—S2—C11—C10−17.2 (5)
C3—C4—C5—C6−2.5 (9)C10—N3—C12—C13106.6 (5)
C3—C4—C5—C8177.4 (6)C9—N3—C12—C13−70.6 (6)
C4—C5—C6—C73.2 (10)C10—N3—C12—S2−14.5 (6)
C8—C5—C6—C7−176.8 (6)C9—N3—C12—S2168.3 (4)
O1—C2—C7—C6179.9 (6)C11—S2—C12—N317.6 (4)
C3—C2—C7—C6−0.1 (10)C11—S2—C12—C13−104.5 (4)
C5—C6—C7—C2−1.9 (10)N3—C12—C13—C14−31.0 (7)
N2—N1—C8—C5−179.4 (5)S2—C12—C13—C1486.3 (6)
N2—N1—C8—S1−0.9 (7)N3—C12—C13—C18151.9 (5)
C4—C5—C8—N1−173.3 (6)S2—C12—C13—C18−90.8 (5)
C6—C5—C8—N16.6 (9)C18—C13—C14—C15−1.7 (8)
C4—C5—C8—S18.3 (8)C12—C13—C14—C15−178.9 (5)
C6—C5—C8—S1−171.8 (5)C13—C14—C15—C160.1 (9)
C9—S1—C8—N11.5 (5)C14—C15—C16—C171.4 (8)
C9—S1—C8—C5−179.9 (5)C14—C15—C16—Cl1−178.2 (4)
N1—N2—C9—N3179.6 (5)C15—C16—C17—C18−1.3 (8)
N1—N2—C9—S11.8 (7)Cl1—C16—C17—C18178.3 (4)
C10—N3—C9—N2−175.9 (5)C16—C17—C18—C13−0.3 (8)
C12—N3—C9—N21.1 (8)C16—C17—C18—Cl2179.4 (4)
C10—N3—C9—S11.7 (8)C14—C13—C18—C171.7 (8)
C12—N3—C9—S1178.7 (4)C12—C13—C18—C17179.0 (5)
C8—S1—C9—N2−1.9 (5)C14—C13—C18—Cl2−178.0 (4)
C8—S1—C9—N3−179.6 (5)C12—C13—C18—Cl2−0.7 (7)
C9—N3—C10—O20.1 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···S10.932.793.180 (7)106
C6—H6A···N10.932.552.856 (8)100
C12—H12A···Cl20.982.633.063 (5)107
C14—H14A···N30.932.542.863 (8)101
C14—H14A···O1i0.932.413.219 (7)146

Symmetry codes: (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2442).

References

  • Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem.38B, 998–1001.
  • Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem.48, 5312–5315. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc.77, 46–48.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem.35, 29–36.
  • Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem.35B, 1218–1220.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography