PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o846.
Published online 2008 April 16. doi:  10.1107/S1600536808009689
PMCID: PMC2961247

1,1′-Biphenyl-2,3,3′,4′-tetra­carboxylic acid monohydrate

Abstract

In the organic molecule of the title compound, C16H10O8·H2O, the dihedral angle between the two benzene rings is 42.30 (11)°. Extensive O—H(...)O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Adadie & Sillion (1991 [triangle]); Hasegawa et al. (1999 [triangle]); Hergenrother et al. (2004 [triangle]); Iataaki & Yoshimoto (1973 [triangle]); Yang & Su (2005 [triangle]). For a related structure, see: Holý et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o846-scheme1.jpg

Experimental

Crystal data

  • C16H10O8·H2O
  • M r = 348.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o846-efi1.jpg
  • a = 6.860 (3) Å
  • b = 11.339 (5) Å
  • c = 11.562 (4) Å
  • α = 118.14 (3)°
  • β = 97.34 (3)°
  • γ = 94.47 (4)°
  • V = 776.7 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 294 (2) K
  • 0.44 × 0.36 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3389 measured reflections
  • 2889 independent reflections
  • 2074 reflections with I > 2σ(I)
  • R int = 0.004
  • 3 standard reflections every 250 reflections intensity decay: 1.4%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.178
  • S = 0.98
  • 2889 reflections
  • 240 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: DIFRAC (Gabe et al., 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009689/xu2413sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009689/xu2413Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Undergraduates’ Innovative Experiment Project of China and the Undergraduates’ Innovative Experiment Project of Sichuan University for financial support, and thank Mr Zhi-Hua Mao of Sichuan University for the diffraction data collection.

supplementary crystallographic information

Comment

Aromatic polyimides are well accepted as high-performance polymeric materials because of their excellent thermal and mechanical properties at elevated temperatures (Adadie & Sillion, 1991); 2,3,3',4'-biphenyltetracarboxylic dianhydride is the most important monomer of aromatic polyimides and particularly useful in the preparation of soluble polyimides with high glass transition temperature and high thermoplasticity (Hasegawa et al., 1999; Hergenrother et al., 2004; Yang & Su, 2005). The title compound is a starting reagent for preparing 2,3,3',4'-biphenyltetracarboxylic dianhydride (Iataaki & Yoshimoto, 1973).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the two phenyl rings of 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid is 42.30 (11)°, which is markedly differ from 88.69° found in the 1,1'-biphenyl-2,2',3,3'-tetracarboxylic acid monohydrate (Holý et al., 2004). This might be a result of intermolecular O—H···O interactions and steric effects of the title compound. The lattice water molecule links with 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid via O—H···O hydrogen bonding (Table 1). The extensive O—H···O hydrogen bonding between 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid molecules helps to stabilize the crystal structure.

Experimental

2,3,3',4'-Tetramethyl biphenyltetracarboxylate (20.0 g, 52 mmol), concentrated hydrochloric acid (10 ml) and acetic acid (50 ml) in water (50 ml) were refluxed for 4 h. On concentrating the reaction mixture afforded the crude 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid. Recrystallization of the crude acid from water gave 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid (m.p. 468–470 K) (Iataaki & Yoshimoto, 1973). Colorless single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of water over a period of several days.

Refinement

H atoms of the water molecule were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 Å and O—H = 0.82 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C16H10O8·H2O1Z = 2
Mr = 348.26F000 = 360
Triclinic, P1Dx = 1.489 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.860 (3) ÅCell parameters from 20 reflections
b = 11.339 (5) Åθ = 4.5–7.5º
c = 11.562 (4) ŵ = 0.13 mm1
α = 118.14 (3)ºT = 294 (2) K
β = 97.34 (3)ºBlock, colourless
γ = 94.47 (4)º0.44 × 0.36 × 0.18 mm
V = 776.7 (5) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.005
Radiation source: fine-focus sealed tubeθmax = 25.5º
Monochromator: graphiteθmin = 2.0º
T = 294(2) Kh = −8→8
ω/2θ scansk = −5→13
Absorption correction: nonel = −13→12
3389 measured reflections3 standard reflections
2889 independent reflections every 250 reflections
2074 reflections with I > 2σ(I) intensity decay: 1.4%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178Calculated w = 1/[σ2(Fo2) + (0.1334P)2] where P = (Fo2 + 2Fc2)/3 ?
S = 0.98(Δ/σ)max < 0.001
2889 reflectionsΔρmax = 0.35 e Å3
240 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3911 (3)0.4576 (2)0.0916 (2)0.0520 (6)
O20.3354 (3)0.6316 (2)0.0600 (2)0.0554 (6)
H20.43550.61600.02680.066*
O30.0748 (3)0.25686 (17)0.03658 (17)0.0392 (5)
H30.14260.19610.01670.047*
O40.2316 (3)0.32664 (18)0.24633 (18)0.0397 (5)
O5−0.5242 (3)−0.05309 (17)0.10577 (18)0.0399 (5)
H5−0.6058−0.00720.14420.048*
O6−0.2050 (3)−0.02764 (18)0.10600 (19)0.0467 (5)
O7−0.3954 (3)−0.00002 (18)0.37645 (19)0.0455 (5)
O8−0.4933 (3)0.17283 (19)0.54348 (19)0.0462 (5)
H8−0.50460.11860.57130.055*
C10.0408 (3)0.4734 (2)0.2032 (2)0.0276 (5)
C20.1241 (4)0.5721 (2)0.1745 (2)0.0310 (6)
C30.0495 (4)0.6933 (3)0.2149 (3)0.0387 (6)
H3A0.10480.75820.19580.046*
C4−0.1069 (5)0.7174 (3)0.2834 (3)0.0481 (7)
H4−0.15730.79830.31030.058*
C5−0.1882 (4)0.6206 (3)0.3119 (3)0.0385 (6)
H5A−0.29290.63800.35840.046*
C6−0.1176 (4)0.4980 (2)0.2728 (2)0.0288 (5)
C7−0.2085 (3)0.3987 (2)0.3089 (2)0.0267 (5)
C8−0.2530 (4)0.4447 (2)0.4356 (2)0.0302 (5)
H8A−0.23220.53710.49540.036*
C9−0.3284 (4)0.3537 (2)0.4735 (2)0.0309 (5)
H9−0.35890.38600.55830.037*
C10−0.3590 (3)0.2150 (2)0.3867 (2)0.0273 (5)
C11−0.3206 (3)0.1679 (2)0.2579 (2)0.0269 (5)
C12−0.2489 (3)0.2590 (2)0.2192 (2)0.0282 (5)
H12−0.22730.22710.13240.034*
C130.2963 (4)0.5479 (3)0.1050 (3)0.0346 (6)
C140.1296 (3)0.3453 (2)0.1646 (2)0.0285 (5)
C15−0.3477 (4)0.0196 (2)0.1528 (2)0.0301 (5)
C16−0.4193 (4)0.1204 (2)0.4366 (2)0.0308 (5)
O90.2047 (4)0.0732 (2)0.2263 (2)0.0527 (6)
H910.211 (5)0.159 (4)0.235 (3)0.066 (10)*
H920.081 (7)0.041 (4)0.191 (4)0.082 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0489 (12)0.0604 (13)0.0783 (15)0.0237 (10)0.0399 (11)0.0501 (12)
O20.0559 (14)0.0647 (14)0.0816 (16)0.0250 (11)0.0441 (12)0.0548 (13)
O30.0459 (11)0.0341 (9)0.0338 (10)0.0160 (8)0.0142 (8)0.0104 (8)
O40.0435 (11)0.0402 (10)0.0395 (10)0.0162 (8)0.0110 (8)0.0207 (8)
O50.0384 (10)0.0297 (9)0.0430 (11)0.0004 (8)0.0090 (8)0.0112 (8)
O60.0426 (12)0.0340 (10)0.0509 (12)0.0112 (8)0.0223 (9)0.0065 (8)
O70.0701 (14)0.0338 (10)0.0485 (11)0.0211 (9)0.0328 (10)0.0256 (9)
O80.0685 (14)0.0376 (10)0.0486 (11)0.0177 (9)0.0372 (10)0.0261 (9)
C10.0296 (13)0.0263 (11)0.0272 (12)0.0041 (9)0.0086 (9)0.0125 (9)
C20.0302 (13)0.0348 (12)0.0328 (12)0.0045 (10)0.0100 (10)0.0193 (10)
C30.0455 (16)0.0335 (13)0.0478 (15)0.0080 (11)0.0193 (12)0.0256 (12)
C40.062 (2)0.0344 (14)0.0627 (19)0.0210 (13)0.0308 (15)0.0287 (13)
C50.0379 (15)0.0367 (13)0.0493 (16)0.0143 (11)0.0251 (12)0.0224 (12)
C60.0315 (13)0.0271 (11)0.0284 (12)0.0047 (9)0.0107 (9)0.0128 (10)
C70.0234 (12)0.0275 (11)0.0312 (12)0.0067 (9)0.0112 (9)0.0139 (10)
C80.0339 (13)0.0236 (11)0.0298 (12)0.0048 (10)0.0131 (10)0.0085 (9)
C90.0326 (13)0.0321 (12)0.0277 (12)0.0053 (10)0.0128 (10)0.0125 (10)
C100.0256 (12)0.0292 (12)0.0320 (12)0.0072 (9)0.0116 (9)0.0168 (10)
C110.0227 (12)0.0262 (11)0.0311 (12)0.0047 (9)0.0087 (9)0.0124 (10)
C120.0298 (12)0.0285 (11)0.0280 (12)0.0048 (9)0.0111 (9)0.0138 (10)
C130.0336 (14)0.0382 (13)0.0383 (14)0.0040 (11)0.0118 (10)0.0226 (11)
C140.0265 (12)0.0301 (12)0.0299 (12)0.0039 (9)0.0127 (9)0.0137 (10)
C150.0325 (13)0.0268 (11)0.0306 (12)0.0040 (10)0.0112 (10)0.0126 (10)
C160.0334 (14)0.0318 (12)0.0316 (12)0.0077 (10)0.0109 (10)0.0174 (10)
O90.0371 (13)0.0471 (12)0.0768 (16)0.0105 (10)0.0122 (11)0.0315 (11)

Geometric parameters (Å, °)

O1—C131.214 (3)C4—C51.384 (4)
O2—C131.307 (3)C4—H40.9300
O2—H20.8200C5—C61.393 (4)
O3—C141.318 (3)C5—H5A0.9300
O3—H30.8200C6—C71.494 (3)
O4—C141.213 (3)C7—C81.389 (3)
O5—C151.302 (3)C7—C121.403 (3)
O5—H50.8200C8—C91.388 (3)
O6—C151.218 (3)C8—H8A0.9300
O7—C161.242 (3)C9—C101.390 (3)
O8—C161.286 (3)C9—H90.9300
O8—H80.8200C10—C111.394 (3)
C1—C61.402 (3)C10—C161.493 (3)
C1—C21.409 (3)C11—C121.387 (3)
C1—C141.509 (3)C11—C151.518 (3)
C2—C31.391 (4)C12—H120.9300
C2—C131.483 (4)O9—H910.92 (4)
C3—C41.383 (4)O9—H920.86 (5)
C3—H3A0.9300
C13—O2—H2109.5C7—C8—H8A119.8
C14—O3—H3109.5C8—C9—C10121.0 (2)
C15—O5—H5109.5C8—C9—H9119.5
C16—O8—H8109.5C10—C9—H9119.5
C6—C1—C2119.7 (2)C9—C10—C11119.0 (2)
C6—C1—C14120.6 (2)C9—C10—C16119.1 (2)
C2—C1—C14119.6 (2)C11—C10—C16121.8 (2)
C3—C2—C1120.2 (2)C12—C11—C10119.9 (2)
C3—C2—C13120.2 (2)C12—C11—C15115.4 (2)
C1—C2—C13119.6 (2)C10—C11—C15124.7 (2)
C4—C3—C2120.0 (2)C11—C12—C7121.1 (2)
C4—C3—H3A120.0C11—C12—H12119.4
C2—C3—H3A120.0C7—C12—H12119.4
C3—C4—C5119.7 (2)O1—C13—O2123.5 (3)
C3—C4—H4120.1O1—C13—C2122.4 (2)
C5—C4—H4120.1O2—C13—C2114.1 (2)
C4—C5—C6121.8 (3)O4—C14—O3125.3 (2)
C4—C5—H5A119.1O4—C14—C1122.0 (2)
C6—C5—H5A119.1O3—C14—C1112.5 (2)
C5—C6—C1118.5 (2)O6—C15—O5120.3 (2)
C5—C6—C7119.4 (2)O6—C15—C11119.1 (2)
C1—C6—C7122.1 (2)O5—C15—C11120.3 (2)
C8—C7—C12118.4 (2)O7—C16—O8124.1 (2)
C8—C7—C6119.5 (2)O7—C16—C10120.3 (2)
C12—C7—C6122.1 (2)O8—C16—C10115.5 (2)
C9—C8—C7120.5 (2)H91—O9—H92100 (4)
C9—C8—H8A119.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.872.661 (3)163
O3—H3···O6ii0.821.892.640 (3)152
O5—H5···O9iii0.821.762.578 (3)173
O8—H8···O7iv0.821.842.634 (3)164
O9—H91···O40.92 (4)1.84 (4)2.761 (3)178 (3)
O9—H92···O60.86 (5)1.99 (5)2.853 (3)178 (4)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z; (iii) x−1, y, z; (iv) −x−1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2413).

References

  • Adadie, M. J. M. & Sillion, B. (1991). Editors. Polyimides and Other High-Temperature Polymers Amsterdam: Elsevier.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J., White, P. S. & Enright, G. D. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.
  • Hasegawa, M., Sensui, N., Shindo, Y. & Yokota, R. (1999). Macromolecules, 32, 387–396.
  • Hergenrother, P. M., Watson, K. A., Smith, J. G. Jr, Connell, J. W. & Yokota, R. (2004). Polymer, 45, 5441–5449.
  • Holý, P., Sehnal, P., Tichý, M., Závada, J. & Císarová, I. (2004). Tetrahedron Asymmetry, 15, 3805–3810.
  • Iataaki, H. & Yoshimoto, H. (1973). J. Org. Chem.38, 76–79.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, C.-P. & Su, Y.-Y. (2005). Polymer, 46, 5797–5807.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography