PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o784.
Published online 2008 April 2. doi:  10.1107/S1600536808005898
PMCID: PMC2961245

(3S,4S)-3-Ethyl-4-hydr­oxy-3-(3-methoxy­phen­yl)-1-methyl­azepan-1-ium d-tartrate dihydrate

Abstract

In the title compound, C16H26NO2 +·C4H5O6 ·2H2O, a meptaz­inol derivative, three C atoms of the azepane ring are disordered over two positions, with site-occupancy factors of 0.80 and 0.20; the major disorder component adopts a twist-chair conformation, while the minor component has a chair conformation. The benzene ring is axially substituted on the heterocyclic ring, resulting in a folded conformation of the cation. The absolute configuration was determined with reference to d-tartaric acid. The crystal structure is stabilized by an extensive network of intra- and inter­molecular O—H(...)O hydrogen bonds.

Related literature

For the synthesis of the racemate of the title compound, see: Hao et al. (2005 [triangle]). For conformational studies of seven-membered rings, see: Eliel et al. (1994 [triangle]); Entrena et al. (2005 [triangle]). For the analgesic activity and clinical use of meptazinol, see: Holmes (1985 [triangle]). For related literature, see: Bill et al. (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o784-scheme1.jpg

Experimental

Crystal data

  • C16H26NO2 +·C4H5O6 ·2H2O
  • M r = 449.49
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o784-efi1.jpg
  • a = 7.146 (3) Å
  • b = 10.812 (4) Å
  • c = 29.338 (11) Å
  • V = 2266.7 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.20 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.979, T max = 0.988
  • 11334 measured reflections
  • 2855 independent reflections
  • 2173 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.163
  • S = 1.04
  • 2855 reflections
  • 319 parameters
  • 19 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005898/wn2243sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005898/wn2243Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is funded in part by the National Natural Science Foundation of China (grant No. 30472088).

supplementary crystallographic information

Comment

Meptazinol is a selective µ agonist with additional central anticholinergic activity, which has been used for treating pain associated with labour and kidney problems (Holmes, 1985). Many studies have shown meptazinol to have an advantage over other opioid analgesics because of its lack of adverse cardiorespiratory effects and low addiction liability (Bill et al., 1983); this makes it an ideal precursor for further investigation. During the course of our structural optimization of meptazinol, the title compound was synthesized by introducing an OH group at the 4-position, followed by resolution with D-tartaric acid.

The absolute configuration of the azepane ring atoms is N1(R), C3(S) and C4(S), according to the reference molecule D-tartaric acid. The O—H functionalities, carboxyl group and H2O are known to be efficient donor and acceptor groups for hydrogen bonding, and they form an extensive hydrogen-bond network, which stabilizes the structure. The 3-methoxyphenyl substituent at C3 is trans to the OH group at C4 and cis to the N—H bond, resulting in a folded conformation of the cation.

The major disorder component adopts a twist-chair conformation, while the minor component has a chair conformation. The twist-chair conformation of seven-membered rings is known to be more stable than the chair conformation (Entrena et al., 2005). Thus, the relative proportion of both conformers observed within the crystal structure may reflect the statistical partitioning of the two populations of azepane structures corresponding to different energetic states.

Experimental

The title compound was prepared by standard procedures upon optical resolution of the racemate with D-tartaric acid. The synthesis of the racemic compound was described by Hao et al. (2005).

Refinement

The H atoms bonded to N and O in the azepane ring, also the water hydrogen atoms were located in difference maps and refined with restraints: N—H = 0.89 (2) Å and O—H = 0.82 (2) and 0.83 (2) Å. The H atoms attached to O in the anion and all carbon-bound H atoms were placed in calculated positions and refined as riding; O—H = 0.82 and C—H = 0.93 - 0.98 Å; Uiso(H) = xUeq(parent atom) where x = 1.5 for O and 1.2 for C. In the cation, three C atoms with attached H atoms are disordered over two positions; the site occupancy factors are 0.80 and 0.20.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids at the 20% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Both azepane ring conformations are depicted; the minor chair conformation is drawn with ...
Fig. 2.
A view of the crystal packing, showing the hydrogen-bonding network (dashed lines). Only the twist-chair conformation of the azepane ring is shown.

Crystal data

C16H26NO2+·C4H5O6·2H2OF000 = 968
Mr = 449.49Dx = 1.317 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1000 reflections
a = 7.146 (3) Åθ = 2.8–22.5º
b = 10.812 (4) ŵ = 0.11 mm1
c = 29.338 (11) ÅT = 293 (2) K
V = 2266.7 (15) Å3Prismatic, colorless
Z = 40.20 × 0.15 × 0.12 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer2855 independent reflections
Radiation source: fine-focus sealed tube2173 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.076
T = 293(2) Kθmax = 27.1º
[var phi] and ω scansθmin = 1.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→4
Tmin = 0.979, Tmax = 0.988k = −13→13
11334 measured reflectionsl = −37→37

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163  w = 1/[σ2(Fo2) + (0.0771P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2855 reflectionsΔρmax = 0.43 e Å3
319 parametersΔρmin = −0.26 e Å3
19 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O1−1.0175 (7)0.3641 (4)0.46124 (12)0.0684 (12)
H1X−1.114 (7)0.405 (6)0.457 (2)0.14 (4)*
O2−0.7001 (6)0.4436 (3)0.25255 (10)0.0628 (11)
O3−0.6276 (4)0.1543 (3)0.13391 (10)0.0425 (7)
H3−0.74000.14180.13070.064*
O4−0.6399 (5)0.2140 (4)0.06130 (12)0.0626 (10)
O5−0.2757 (4)0.2069 (3)0.05050 (10)0.0487 (8)
H5−0.36050.23650.03520.073*
O6−0.3086 (4)0.3996 (3)0.11490 (10)0.0430 (7)
H6−0.37660.43100.13420.065*
O70.0443 (4)0.3653 (3)0.13158 (11)0.0480 (8)
O80.0205 (4)0.1619 (3)0.13574 (10)0.0391 (7)
O9−0.6223 (5)0.4527 (3)0.15827 (12)0.0473 (8)
H9X−0.651 (9)0.457 (5)0.1855 (9)0.066 (17)*
H9Y−0.721 (6)0.424 (7)0.147 (2)0.11 (3)*
O100.0604 (5)0.1148 (3)0.01603 (11)0.0472 (8)
H10X−0.033 (5)0.142 (5)0.0284 (18)0.067 (18)*
H10Y0.121 (8)0.135 (6)0.0387 (14)0.08 (2)*
N1−0.9584 (7)0.0649 (3)0.42832 (11)0.0451 (10)
H1−0.925 (6)0.018 (3)0.4048 (10)0.029 (11)*
C2−1.0991 (6)0.1554 (4)0.41055 (14)0.0381 (9)
H2A−1.17460.18160.43630.046*
H2B−1.18140.11030.39020.046*
C3−1.0364 (6)0.2740 (4)0.38507 (13)0.0340 (9)
C4−0.9242 (8)0.3610 (4)0.41797 (14)0.0480 (12)
H4−0.92890.44470.40520.058*
C5A−0.7183 (8)0.3276 (5)0.42468 (16)0.0575 (13)0.80
H5A−0.67380.36770.45220.069*0.80
H5B−0.64730.36090.39930.069*0.80
C6A−0.6754 (8)0.1822 (6)0.42849 (18)0.0489 (15)0.80
H6A−0.67340.14800.39790.059*0.80
H6B−0.55090.17210.44120.059*0.80
C7A−0.8041 (9)0.1098 (5)0.4556 (2)0.0691 (15)0.80
H7A−0.85220.16020.48030.083*0.80
H7B−0.73820.04010.46890.083*0.80
C5B−0.7183 (8)0.3276 (5)0.42468 (16)0.0575 (13)0.20
H5B1−0.66300.29600.39680.069*0.20
H5B2−0.64630.39800.43530.069*0.20
C6B−0.730 (4)0.2392 (14)0.4568 (5)0.049 (6)0.20
H6B1−0.79940.27820.48140.058*0.20
H6B2−0.60330.23040.46800.058*0.20
C7B−0.8041 (9)0.1098 (5)0.4556 (2)0.0691 (15)0.20
H7B1−0.69800.05800.44770.083*0.20
H7B2−0.83580.08950.48690.083*0.20
C8−1.0659 (12)−0.0250 (5)0.45936 (18)0.082 (2)
H8A−0.9931−0.09860.46380.123*
H8B−1.1831−0.04620.44540.123*
H8C−1.08880.01360.48830.123*
C9−1.2199 (7)0.3436 (5)0.37375 (18)0.0567 (13)
H9A−1.29560.34710.40120.068*
H9B−1.18820.42800.36560.068*
C10−1.3354 (9)0.2906 (7)0.3367 (2)0.0770 (18)
H10A−1.26040.28140.30970.116*
H10B−1.43860.34480.33030.116*
H10C−1.38210.21120.34590.116*
C11−0.9309 (6)0.2535 (4)0.34049 (13)0.0338 (9)
C12−0.8603 (6)0.3570 (4)0.31824 (13)0.0388 (10)
H12−0.87040.43460.33170.047*
C13−0.7751 (7)0.3450 (5)0.27617 (14)0.0442 (10)
C14−0.7607 (8)0.2313 (5)0.25529 (15)0.0528 (13)
H14−0.70370.22410.22690.063*
C15−0.8316 (8)0.1289 (5)0.27677 (14)0.0523 (13)
H15−0.82340.05190.26280.063*
C16−0.9167 (6)0.1400 (4)0.31989 (13)0.0412 (10)
H16−0.96340.07010.33440.049*
C17−0.6939 (10)0.5617 (5)0.27368 (17)0.0643 (15)
H17A−0.81700.58400.28390.096*
H17B−0.65010.62200.25210.096*
H17C−0.61040.55900.29930.096*
C18−0.5553 (6)0.1854 (4)0.09532 (14)0.0357 (9)
C19−0.3405 (5)0.1845 (4)0.09492 (14)0.0348 (9)
H19−0.29790.10220.10420.042*
C20−0.2607 (5)0.2792 (4)0.12837 (13)0.0311 (8)
H20−0.31440.26360.15860.037*
C21−0.0461 (6)0.2685 (3)0.13173 (12)0.0304 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.102 (3)0.054 (2)0.0493 (19)−0.015 (2)0.036 (2)−0.0117 (16)
O20.093 (3)0.062 (2)0.0337 (16)−0.020 (2)0.0192 (19)−0.0047 (14)
O30.0267 (13)0.0508 (18)0.0499 (17)−0.0006 (14)−0.0032 (13)0.0072 (15)
O40.0358 (17)0.102 (3)0.0504 (19)−0.001 (2)−0.0073 (16)0.0149 (19)
O50.0355 (16)0.071 (2)0.0396 (16)0.0106 (16)0.0018 (14)−0.0067 (15)
O60.0343 (16)0.0337 (15)0.0612 (19)0.0056 (13)0.0115 (15)0.0052 (13)
O70.0328 (15)0.0357 (16)0.076 (2)−0.0038 (14)−0.0019 (17)0.0016 (15)
O80.0268 (14)0.0354 (15)0.0550 (17)0.0019 (12)−0.0009 (13)0.0041 (13)
O90.0393 (18)0.059 (2)0.0433 (19)−0.0009 (16)0.0073 (16)−0.0042 (16)
O100.0456 (19)0.0567 (19)0.0392 (17)0.0046 (18)0.0032 (17)−0.0048 (15)
N10.070 (3)0.0334 (18)0.0320 (18)0.006 (2)−0.007 (2)−0.0040 (14)
C20.042 (2)0.032 (2)0.040 (2)−0.0049 (19)0.0031 (19)0.0004 (17)
C30.034 (2)0.0302 (19)0.038 (2)0.0035 (18)0.0068 (19)0.0033 (16)
C40.077 (3)0.033 (2)0.034 (2)−0.005 (2)0.024 (2)−0.0071 (17)
C5A0.055 (3)0.078 (4)0.039 (2)−0.020 (3)−0.007 (2)−0.008 (2)
C6A0.039 (3)0.079 (4)0.029 (3)0.018 (3)−0.008 (2)0.004 (3)
C7A0.074 (4)0.061 (3)0.073 (3)0.007 (3)−0.020 (3)−0.002 (3)
C5B0.055 (3)0.078 (4)0.039 (2)−0.020 (3)−0.007 (2)−0.008 (2)
C6B0.086 (18)0.046 (9)0.014 (8)0.022 (10)−0.020 (11)−0.001 (8)
C7B0.074 (4)0.061 (3)0.073 (3)0.007 (3)−0.020 (3)−0.002 (3)
C80.147 (7)0.049 (3)0.050 (3)0.009 (4)0.039 (4)0.014 (2)
C90.048 (3)0.061 (3)0.062 (3)0.016 (3)0.009 (3)0.011 (2)
C100.050 (3)0.104 (5)0.077 (4)0.020 (4)−0.010 (3)0.003 (4)
C110.030 (2)0.042 (2)0.0300 (18)0.0037 (18)−0.0032 (17)0.0003 (16)
C120.046 (2)0.043 (2)0.0281 (19)−0.003 (2)−0.0044 (18)−0.0038 (17)
C130.043 (2)0.056 (3)0.033 (2)−0.005 (2)−0.0041 (19)0.0015 (19)
C140.059 (3)0.068 (3)0.032 (2)0.000 (3)0.006 (2)−0.009 (2)
C150.068 (3)0.051 (3)0.038 (2)0.000 (3)0.002 (2)−0.011 (2)
C160.048 (3)0.039 (2)0.036 (2)0.006 (2)0.0024 (19)0.0006 (17)
C170.083 (4)0.060 (3)0.050 (3)−0.017 (3)0.003 (3)0.004 (2)
C180.0300 (19)0.037 (2)0.040 (2)0.0026 (18)−0.004 (2)−0.0023 (17)
C190.028 (2)0.036 (2)0.040 (2)0.0058 (17)−0.0012 (18)0.0007 (17)
C200.0279 (19)0.0302 (19)0.0351 (19)0.0021 (16)0.0045 (17)0.0018 (16)
C210.0273 (18)0.033 (2)0.0313 (18)−0.0011 (17)0.0036 (17)0.0027 (15)

Geometric parameters (Å, °)

O1—C41.434 (5)C6A—H6A0.9700
O1—H1X0.83 (2)C6A—H6B0.9700
O2—C131.380 (6)C7A—H7A0.9700
O2—C171.420 (6)C7A—H7B0.9700
O3—C181.289 (5)C6B—H6B10.9700
O3—H30.8200C6B—H6B20.9700
O4—C181.207 (5)C8—H8A0.9599
O5—C191.404 (5)C8—H8B0.9599
O5—H50.8200C8—H8C0.9599
O6—C201.403 (5)C9—C101.482 (8)
O6—H60.8200C9—H9A0.9700
O7—C211.230 (5)C9—H9B0.9700
O8—C211.252 (5)C10—H10A0.9599
O9—H9X0.83 (2)C10—H10B0.9599
O9—H9Y0.83 (2)C10—H10C0.9599
O10—H10X0.82 (2)C11—C161.371 (6)
O10—H10Y0.82 (2)C11—C121.391 (6)
N1—C7A1.447 (7)C12—C131.383 (6)
N1—C21.496 (6)C12—H120.9300
N1—C81.538 (7)C13—C141.377 (7)
N1—H10.890 (19)C14—C151.371 (7)
C2—C31.551 (5)C14—H140.9300
C2—H2A0.9700C15—C161.409 (6)
C2—H2B0.9700C15—H150.9300
C3—C111.526 (5)C16—H160.9300
C3—C91.548 (7)C17—H17A0.9599
C3—C41.568 (6)C17—H17B0.9599
C4—C5A1.528 (8)C17—H17C0.9599
C4—H40.9800C18—C191.536 (6)
C5A—C6A1.606 (8)C19—C201.528 (6)
C5A—H5A0.9700C19—H190.9800
C5A—H5B0.9700C20—C211.541 (6)
C6A—C7A1.446 (8)C20—H200.9800
C4—O1—H1X106 (6)H8B—C8—H8C109.5
C13—O2—C17119.2 (4)C10—C9—C3116.2 (5)
C18—O3—H3109.5C10—C9—H9A108.2
C19—O5—H5109.5C3—C9—H9A108.2
C20—O6—H6109.5C10—C9—H9B108.2
H9X—O9—H9Y101 (6)C3—C9—H9B108.2
H10X—O10—H10Y89 (5)H9A—C9—H9B107.4
C7A—N1—C2119.1 (4)C9—C10—H10A109.5
C7A—N1—C8105.4 (4)C9—C10—H10B109.5
C2—N1—C8106.5 (4)H10A—C10—H10B109.5
C7A—N1—H1115 (3)C9—C10—H10C109.5
C2—N1—H1107 (3)H10A—C10—H10C109.5
C8—N1—H1103 (3)H10B—C10—H10C109.5
N1—C2—C3121.0 (4)C16—C11—C12119.1 (4)
N1—C2—H2A107.1C16—C11—C3123.0 (4)
C3—C2—H2A107.1C12—C11—C3117.7 (3)
N1—C2—H2B107.1C13—C12—C11120.2 (4)
C3—C2—H2B107.1C13—C12—H12119.9
H2A—C2—H2B106.8C11—C12—H12119.9
C11—C3—C9107.8 (3)C14—C13—O2115.9 (4)
C11—C3—C2115.8 (3)C14—C13—C12121.0 (4)
C9—C3—C2105.1 (4)O2—C13—C12123.1 (4)
C11—C3—C4111.2 (3)C15—C14—C13119.3 (4)
C9—C3—C4105.9 (4)C15—C14—H14120.4
C2—C3—C4110.3 (3)C13—C14—H14120.4
O1—C4—C5A109.8 (4)C14—C15—C16120.2 (4)
O1—C4—C3108.7 (4)C14—C15—H15119.9
C5A—C4—C3115.5 (4)C16—C15—H15119.9
O1—C4—H4107.5C11—C16—C15120.3 (4)
C5A—C4—H4107.5C11—C16—H16119.9
C3—C4—H4107.5C15—C16—H16119.9
C4—C5A—C6A115.1 (4)O2—C17—H17A109.5
C4—C5A—H5A108.5O2—C17—H17B109.5
C6A—C5A—H5A108.5H17A—C17—H17B109.5
C4—C5A—H5B108.5O2—C17—H17C109.5
C6A—C5A—H5B108.5H17A—C17—H17C109.5
H5A—C5A—H5B107.5H17B—C17—H17C109.5
C7A—C6A—C5A116.5 (5)O4—C18—O3126.3 (4)
C7A—C6A—H6A108.2O4—C18—C19119.7 (4)
C5A—C6A—H6A108.2O3—C18—C19114.0 (4)
C7A—C6A—H6B108.2O5—C19—C20111.0 (3)
C5A—C6A—H6B108.2O5—C19—C18109.6 (3)
H6A—C6A—H6B107.3C20—C19—C18111.4 (3)
C6A—C7A—N1111.2 (5)O5—C19—H19108.3
C6A—C7A—H7A109.4C20—C19—H19108.3
N1—C7A—H7A109.4C18—C19—H19108.3
C6A—C7A—H7B109.4O6—C20—C19110.5 (3)
N1—C7A—H7B109.4O6—C20—C21109.3 (3)
H7A—C7A—H7B108.0C19—C20—C21111.2 (3)
H6B1—C6B—H6B2105.5O6—C20—H20108.6
N1—C8—H8A109.5C19—C20—H20108.6
N1—C8—H8B109.5C21—C20—H20108.6
H8A—C8—H8B109.5O7—C21—O8125.7 (4)
N1—C8—H8C109.5O7—C21—C20117.3 (4)
H8A—C8—H8C109.5O8—C21—C20117.0 (3)
C7A—N1—C2—C350.1 (6)C4—C3—C11—C12−48.4 (5)
C8—N1—C2—C3168.8 (4)C16—C11—C12—C13−0.8 (6)
N1—C2—C3—C1162.8 (5)C3—C11—C12—C13−175.4 (4)
N1—C2—C3—C9−178.4 (4)C17—O2—C13—C14−174.2 (5)
N1—C2—C3—C4−64.6 (5)C17—O2—C13—C125.9 (8)
C11—C3—C4—O1−172.6 (4)C11—C12—C13—C140.9 (7)
C9—C3—C4—O170.6 (5)C11—C12—C13—O2−179.2 (4)
C2—C3—C4—O1−42.7 (5)O2—C13—C14—C15179.8 (5)
C11—C3—C4—C5A−48.7 (5)C12—C13—C14—C15−0.3 (7)
C9—C3—C4—C5A−165.5 (4)C13—C14—C15—C16−0.5 (8)
C2—C3—C4—C5A81.2 (4)C12—C11—C16—C150.0 (7)
O1—C4—C5A—C6A83.7 (5)C3—C11—C16—C15174.4 (4)
C3—C4—C5A—C6A−39.7 (5)C14—C15—C16—C110.6 (7)
C4—C5A—C6A—C7A−41.9 (6)O4—C18—C19—O5−6.3 (6)
C5A—C6A—C7A—N188.8 (6)O3—C18—C19—O5174.0 (3)
C2—N1—C7A—C6A−68.9 (6)O4—C18—C19—C20116.9 (5)
C8—N1—C7A—C6A171.8 (5)O3—C18—C19—C20−62.9 (5)
C11—C3—C9—C1050.3 (6)O5—C19—C20—O657.8 (4)
C2—C3—C9—C10−73.7 (5)C18—C19—C20—O6−64.6 (4)
C4—C3—C9—C10169.4 (5)O5—C19—C20—C21−63.7 (4)
C9—C3—C11—C16−107.3 (5)C18—C19—C20—C21173.9 (3)
C2—C3—C11—C1610.1 (6)O6—C20—C21—O713.9 (5)
C4—C3—C11—C16137.1 (4)C19—C20—C21—O7136.2 (4)
C9—C3—C11—C1267.2 (5)O6—C20—C21—O8−168.1 (3)
C2—C3—C11—C12−175.4 (4)C19—C20—C21—O8−45.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5···O40.822.152.623 (5)116
O6—H6···O90.821.912.641 (5)149
O9—H9X···O20.83 (2)2.00 (2)2.823 (5)171 (6)
O10—H10X···O50.82 (2)1.98 (2)2.790 (5)173 (6)
C7A—H7A···O10.972.563.149 (8)119
C6B—H6B1···O10.971.912.46 (3)113
O9—H9Y···O7i0.83 (2)1.85 (2)2.680 (5)171 (7)
O3—H3···O8i0.821.732.516 (4)160
O5—H5···O10ii0.822.272.983 (5)145
O10—H10Y···O4iii0.82 (2)2.02 (4)2.739 (5)145 (6)
C16—H16···O7iv0.932.503.417 (6)171
C7B—H7B1···O6iv0.972.513.176 (7)126
C6B—H6B2···O1v0.972.393.056 (17)125

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, −z; (iii) x+1, y, z; (iv) −x−1, y−1/2, −z+1/2; (v) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2243).

References

  • Bill, D. J., Hartley, J. E., Stephens, R. J. & Thompson, A. M. (1983). Br. J. Pharm.79, 191–199. [PMC free article] [PubMed]
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eliel, E. L., Wilen, S. H. & Mander, L. N. (1994). Stereochemistry of Organic Compounds, pp. 762–769. New York: Wiley.
  • Entrena, A., Campos, J. M., Gallo, M. A. E. & Spinosa, A. (2005). Arkivoc, 6, 88-108.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hao, J. L., Li, W., Xie, Q., Chen, Y. & Qiu, Z. B. (2005). J. Fudan Univ. (Med. Sci.), 32, 173–177.
  • Holmes, B. (1985). Drugs, 30, 285–312. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography