PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o843.
Published online 2008 April 16. doi:  10.1107/S1600536808009616
PMCID: PMC2961242

2,6-Dichloro­phenyl 4-methyl­benzoate

Abstract

The structure of the title compound (26DCP4MeBA), C14H10Cl2O2, resembles those of phenyl benzoate (PBA), 2,6-dichloro­phenyl benzoate (26DCPBA), 2,4-dichloro­phenyl 4-methyl­benzoate (24DCP4MeBA) and other aryl benzoates, with similar bond parameters. The dihedral angle between the benzene and benzoyl rings in 26DCP4MeBA is 77.97 (9)°, compared with values of 55.7 (PBA), 75.75 (10) (26DCPBA) and 48.13 (5)° (24DCP4MeBA). The mol­ecules in the title compound are packed into zigzag chains in the bc plane.

Related literature

For related literature, see: Adams & Morsi (1976 [triangle]); Gowda et al. (2007a [triangle],b [triangle]); Nayak & Gowda (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o843-scheme1.jpg

Experimental

Crystal data

  • C14H10Cl2O2
  • M r = 281.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o843-efi1.jpg
  • a = 9.5688 (8) Å
  • b = 11.1370 (9) Å
  • c = 13.1947 (9) Å
  • β = 108.898 (7)°
  • V = 1330.33 (18) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 4.32 mm−1
  • T = 299 (2) K
  • 0.60 × 0.35 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.202, T max = 0.273
  • 3035 measured reflections
  • 2366 independent reflections
  • 2025 reflections with I > 2σ(I)
  • R int = 0.040
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.168
  • S = 1.01
  • 2366 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009616/om2223sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009616/om2223Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the structures of chemically and industrially significant compounds (Gowda et al., 2007a,b), the structure of 2,6-dichlorophenyl 4-methylbenzoate (26DCP4MeBA) has been determined. The structure of 26DCP4MeBA (Fig. 1) resembles those of phenyl benzoate (PBA) (Adams & Morsi, 1976), 2,6-dichlorophenyl benzoate (26DCPBA) (Gowda et al., 2007a), 2,4-dichlorophenyl 4-methyl benzoate (24DCP4MeBA) (Gowda et al., 2007b) and other aryl benzoates. The bond parameters in 26DCP4MeBA are similar to those in PBA, 26DCPBA, 24DCP4MeBA and other benzoates. The dihedral angle between the benzene and benzoyl rings in 26DCP4MeBA is 77.97 (9)°, compared to the values of 55.7° (PBA)(Adams & Morsi, 1976), 75.75 (10)° (26DCPBA)(Gowda et al., 2007a) and 48.13 (5)° (24DCP4MeBA)(Gowda et al., 2007b). The molecules in 26DCP4MeBA are packed into a zigzag structure with the dichlorophenyl ring being nearly orthogonal to the benzoyl ring (Fig. 2).

Experimental

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution.

Refinement

The H atoms were positioned with idealized geometry using a riding model (C—H = 0.93–0.96 Å) with Uiso = 1.2 Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound as viewed down a.
Fig. 3.
A view of the title molecule and unit cell

Crystal data

C14H10Cl2O2F000 = 576
Mr = 281.12Dx = 1.404 Mg m3
Monoclinic, P21/nCu Kα radiation λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.5688 (8) Åθ = 5.3–18.7º
b = 11.1370 (9) ŵ = 4.32 mm1
c = 13.1947 (9) ÅT = 299 (2) K
β = 108.898 (7)ºRod, colourless
V = 1330.33 (18) Å30.60 × 0.35 × 0.30 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.040
Radiation source: fine-focus sealed tubeθmax = 67.0º
Monochromator: graphiteθmin = 5.0º
T = 299(2) Kh = −11→2
ω/2θ scansk = −13→0
Absorption correction: ψ scan(North et al., 1968)l = −15→15
Tmin = 0.202, Tmax = 0.2733 standard reflections
3035 measured reflections every 120 min
2366 independent reflections intensity decay: none
2025 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049  w = 1/[σ2(Fo2) + (0.1211P)2 + 0.3061P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.168(Δ/σ)max = 0.011
S = 1.01Δρmax = 0.36 e Å3
2366 reflectionsΔρmin = −0.43 e Å3
165 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0170 (18)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1987 (2)0.6943 (2)0.02446 (17)0.0490 (5)
C20.1627 (3)0.5987 (2)−0.0454 (2)0.0568 (6)
C30.0175 (3)0.5780 (3)−0.1077 (2)0.0683 (7)
H3−0.00650.5127−0.15410.082*
C4−0.0902 (3)0.6551 (3)−0.0999 (2)0.0705 (7)
H4−0.18790.6418−0.14150.085*
C5−0.0563 (3)0.7510 (3)−0.0320 (2)0.0679 (7)
H5−0.13040.8030−0.02800.082*
C60.0887 (3)0.7707 (2)0.03086 (19)0.0547 (6)
C70.4023 (2)0.6546 (2)0.17553 (18)0.0499 (5)
C80.5626 (2)0.6726 (2)0.22269 (17)0.0484 (5)
C90.6386 (3)0.7563 (2)0.1830 (2)0.0636 (7)
H90.58810.80630.12660.076*
C100.7903 (3)0.7648 (3)0.2280 (3)0.0744 (8)
H100.84090.82100.20090.089*
C110.8687 (3)0.6923 (3)0.3118 (2)0.0693 (8)
C120.7918 (3)0.6113 (3)0.3517 (2)0.0681 (7)
H120.84260.56200.40860.082*
C130.6393 (3)0.6016 (2)0.3082 (2)0.0574 (6)
H130.58870.54710.33690.069*
C141.0350 (3)0.7024 (4)0.3581 (3)0.1081 (14)
H14A1.06060.75520.41890.130*
H14B1.07330.73420.30470.130*
H14C1.07660.62450.37990.130*
O10.34465 (16)0.71769 (15)0.08263 (13)0.0551 (5)
O20.32703 (19)0.59229 (19)0.21108 (15)0.0692 (6)
Cl10.30058 (9)0.50474 (7)−0.05432 (7)0.0849 (4)
Cl20.13347 (8)0.89253 (7)0.11604 (6)0.0796 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0404 (11)0.0544 (12)0.0506 (12)0.0032 (9)0.0127 (9)0.0059 (9)
C20.0570 (14)0.0574 (14)0.0578 (13)0.0078 (10)0.0210 (11)0.0025 (10)
C30.0700 (16)0.0723 (17)0.0568 (14)−0.0073 (13)0.0124 (12)−0.0048 (12)
C40.0492 (13)0.093 (2)0.0597 (15)−0.0064 (13)0.0040 (11)0.0035 (14)
C50.0443 (12)0.091 (2)0.0654 (15)0.0142 (12)0.0139 (11)0.0084 (14)
C60.0488 (12)0.0627 (14)0.0522 (12)0.0091 (10)0.0157 (10)0.0002 (10)
C70.0464 (12)0.0493 (12)0.0528 (12)−0.0002 (9)0.0143 (9)0.0007 (9)
C80.0424 (11)0.0485 (12)0.0538 (12)−0.0010 (9)0.0148 (9)−0.0070 (9)
C90.0577 (14)0.0586 (14)0.0741 (16)−0.0067 (11)0.0206 (12)0.0040 (12)
C100.0577 (15)0.0775 (19)0.090 (2)−0.0224 (13)0.0267 (14)−0.0050 (15)
C110.0432 (13)0.091 (2)0.0695 (16)−0.0092 (12)0.0131 (11)−0.0208 (14)
C120.0478 (13)0.0830 (18)0.0635 (15)0.0035 (12)0.0042 (11)−0.0020 (13)
C130.0479 (13)0.0621 (14)0.0597 (14)−0.0038 (10)0.0139 (10)−0.0018 (10)
C140.0438 (15)0.161 (4)0.110 (3)−0.0203 (19)0.0125 (16)−0.025 (3)
O10.0408 (8)0.0593 (10)0.0611 (10)0.0006 (6)0.0109 (7)0.0097 (7)
O20.0502 (9)0.0845 (13)0.0681 (11)−0.0149 (8)0.0125 (8)0.0170 (9)
Cl10.0880 (6)0.0766 (5)0.0967 (6)0.0244 (4)0.0389 (5)−0.0084 (4)
Cl20.0782 (5)0.0754 (5)0.0764 (5)0.0184 (3)0.0128 (4)−0.0178 (3)

Geometric parameters (Å, °)

C1—C61.377 (3)C8—C131.379 (3)
C1—C21.377 (3)C8—C91.385 (3)
C1—O11.383 (3)C9—C101.382 (4)
C2—C31.386 (4)C9—H90.9300
C2—Cl11.718 (2)C10—C111.379 (4)
C3—C41.371 (4)C10—H100.9300
C3—H30.9300C11—C121.372 (4)
C4—C51.364 (4)C11—C141.513 (4)
C4—H40.9300C12—C131.389 (4)
C5—C61.384 (4)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—Cl21.725 (3)C14—H14A0.9600
C7—O21.199 (3)C14—H14B0.9600
C7—O11.365 (3)C14—H14C0.9600
C7—C81.470 (3)
C6—C1—C2119.2 (2)C9—C8—C7122.4 (2)
C6—C1—O1120.3 (2)C10—C9—C8119.4 (3)
C2—C1—O1120.4 (2)C10—C9—H9120.3
C1—C2—C3120.8 (2)C8—C9—H9120.3
C1—C2—Cl1119.07 (19)C11—C10—C9121.8 (3)
C3—C2—Cl1120.2 (2)C11—C10—H10119.1
C4—C3—C2119.0 (3)C9—C10—H10119.1
C4—C3—H3120.5C12—C11—C10118.2 (2)
C2—C3—H3120.5C12—C11—C14121.3 (3)
C5—C4—C3121.0 (2)C10—C11—C14120.5 (3)
C5—C4—H4119.5C11—C12—C13121.0 (3)
C3—C4—H4119.5C11—C12—H12119.5
C4—C5—C6119.7 (2)C13—C12—H12119.5
C4—C5—H5120.1C8—C13—C12120.2 (2)
C6—C5—H5120.1C8—C13—H13119.9
C1—C6—C5120.2 (2)C12—C13—H13119.9
C1—C6—Cl2119.48 (19)C11—C14—H14A109.5
C5—C6—Cl2120.26 (19)C11—C14—H14B109.5
O2—C7—O1122.0 (2)H14A—C14—H14B109.5
O2—C7—C8126.1 (2)C11—C14—H14C109.5
O1—C7—C8111.85 (18)H14A—C14—H14C109.5
C13—C8—C9119.3 (2)H14B—C14—H14C109.5
C13—C8—C7118.3 (2)C7—O1—C1116.30 (17)
C6—C1—C2—C3−0.9 (4)O2—C7—C8—C9−172.7 (3)
O1—C1—C2—C3−177.0 (2)O1—C7—C8—C97.8 (3)
C6—C1—C2—Cl1179.23 (18)C13—C8—C9—C101.7 (4)
O1—C1—C2—Cl13.2 (3)C7—C8—C9—C10−177.0 (2)
C1—C2—C3—C40.8 (4)C8—C9—C10—C11−0.2 (5)
Cl1—C2—C3—C4−179.3 (2)C9—C10—C11—C12−1.0 (5)
C2—C3—C4—C5−0.1 (4)C9—C10—C11—C14179.0 (3)
C3—C4—C5—C6−0.6 (4)C10—C11—C12—C130.5 (4)
C2—C1—C6—C50.2 (4)C14—C11—C12—C13−179.4 (3)
O1—C1—C6—C5176.3 (2)C9—C8—C13—C12−2.2 (4)
C2—C1—C6—Cl2−178.59 (18)C7—C8—C13—C12176.6 (2)
O1—C1—C6—Cl2−2.5 (3)C11—C12—C13—C81.0 (4)
C4—C5—C6—C10.5 (4)O2—C7—O1—C1−8.0 (3)
C4—C5—C6—Cl2179.3 (2)C8—C7—O1—C1171.58 (18)
O2—C7—C8—C138.5 (4)C6—C1—O1—C7100.0 (3)
O1—C7—C8—C13−171.0 (2)C2—C1—O1—C7−84.0 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2223).

References

  • Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.
  • Enraf–Nonius (1996). CAD-4-PC Version 1.2. Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3876.
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3877.
  • Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63 In the press.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Version 6.2c. Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography