PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o791–o792.
Published online 2008 April 2. doi:  10.1107/S1600536808008519
PMCID: PMC2961233

2,2′-(Imino­dimethyl­ene)dibenz­imid­azol­ium bis­(perchlorate) methanol solvate

Abstract

In the title compound, C16H17N5 2+·2ClO4 ·CH3OH, the dihedral angle between the two benzimidazolium ring systems is 34.6 (1)°. The anions and solvent mol­ecules are linked to the cation by N—H(...)O hydrogen bonds. In the crystal structure, the combination of N—H(...)O and O—H(...)O hydrogen bonds results in two-dimensional layers running parallel to the (010) plane; these are in turn linked by π–π inter­actions, forming a three-dimensional network.

Related literature

For related literature, see: Adams et al. (1990 [triangle]); Allen (2002 [triangle]); Berends & Stephan (1984 [triangle]); Bernstein et al. (1995 [triangle]); Bruno et al. (2002 [triangle]); Girasolo et al. (2000 [triangle]); Liao et al. (2001 [triangle]); Liu et al. (2004 [triangle]); Meng et al. (2005 [triangle], 2006a [triangle],b [triangle]); Spek (2003 [triangle]); Tarazon Navarro & McKee (2003 [triangle]); Xu et al. (2007 [triangle]); Young et al. (1995 [triangle]); Zheng et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o791-scheme1.jpg

Experimental

Crystal data

  • C16H17N5 2+·2ClO4 ·CH4O
  • M r = 510.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o791-efi1.jpg
  • a = 8.3359 (4) Å
  • b = 18.0323 (8) Å
  • c = 14.8532 (7) Å
  • β = 102.944 (1)°
  • V = 2175.89 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 295 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.900, T max = 0.932
  • 24553 measured reflections
  • 4957 independent reflections
  • 3479 reflections with I > 2σ(I)
  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.169
  • S = 1.02
  • 4957 reflections
  • 317 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
Table 2 π–π Stacking interactions (°, Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008519/wn2246sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008519/wn2246Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work received financial support mainly from the National Key Fundamental Project (No. 2002CCA00500).

supplementary crystallographic information

Comment

Bis[N-(benzimidazol-2-ylmethyl)]amine (IDB) and its analogs have been utilized extensively in the synthesis of various metal complexes to mimic certain biological activities; these include superoxide dismutase (Liao et al., 2001), DNA probe (Girasolo et al., 2000), alkaline phosphatase (Young et al., 1995). In IDB, each benzimidazole (bzim) arm possesses one imine N atom, one amine NH group and, at the centre, an NH group. The two imine N atoms can chelate metal ions, while the three NH groups can act as hydrogen bond donors. In the absence of metal coordination, the two imine N atoms can also act as hydrogen bond acceptors. The easily formed coordination and hydrogen-bonding interactions allow the central acyclic —CH2—NH—CH2– unit to possess various steric arrangements. In our and other reported organic complex analogs (Meng et al., 2006a; Meng et al., 2006b; Meng et al., 2005; Zheng et al., 2005; Liu et al., 2004; Tarazon Navarro et al., 2003) we find that IDB preferentially adopts a more extended conformation, with the two bzim groups pointing away from each other. However, in most examples of metal-complexes it adopts a more crowded conformation, with the two bzim units bending towards the same side of the central acyclic linkage (Berends & Stephan, 1984; Xu et al., 2007; Adams et al., 1990). With the aim of gaining more insight into the influence of solvents and anions on the crystal structure, we have synthesized H2IDB2+.2ClO4-.CH3OH and report its molecular and supramolecular structure in this communication.

The two imine N atoms on both bzim arms are protonated, as confirmed by the residual electron peaks around the imine N atoms during the structure refinement. The positive charge on each imine N atom is delocalized in the imidazole ring, as evidenced by the near equivalence of bonds C2—N2/C2—N3 [1.323 (3)/1.320 (3) Å] and C10—N4/C10—N5 [1.330 (3)/1.32 6(3) Å]. These values lie within the range of C—N single bond [1.357 (2) Å] and C═N double bond [1.318 (2) Å] determined at low temperature by Tarazon Navarro & McKee (2003). In the title compound, the dication adopts a somewhat folded conformation and the dihedral angle between two bzim groups is 34.6 (1)°. This angle is comparable with those in (IDB).(H2O)4 [36.2 (1)° and 39.7 (1) °; Meng et al. (2006a)] and (IDB)2.(H2O)2.C2H5OH [26.8 (1)° and 25.8 (1)°; Meng et al. (2006b)], but considerably larger those in IDB [0.0°; Tarazon Navarro & McKee (2003)], HIDB+.Cl- [5.4 (1)°; Zheng et al. (2005)], HIDB+.ClO4- [3.7 (1)°; Liu et al. (2004)] and H2IDB2+.SO42- [3.3 (1)°; Meng et al. (2005)].

Two imine N atoms (N2 and N5) act as hydrogen bond donors, via atoms H2A and H5A, respectively, to atoms O8/O9 and O4/O5, thereby generating four hydrogen bonds, each two forming an R21(4) (Fig.1) motif (Bernstein et al., 1995). The other two N atoms (N3 and N4) on bzim also act as hydrogen bond donors, forming intermolecular hydrogen bonds of R12(10) motif, to the methanol solvent molecule. The methanol molecule donates its hydroxyl H atom to atom O6, forming a relatively strong O—H···O hydrogen bond. There is a pseudo-mirror plane passing through the central NH group and the solvent C and O atoms.

In the crystal structure, the component ions are assembled into a three-dimensional network by a combination of N—H···O, O—H···O hydrogen bonds and π-π interactions which can be analyzed in terms of several substructures. Firstly, by the six cooperative hydrogen-bonding interactions (Table 1), the discrete dications, anions and methanol molecules are joined together, forming a relatively independent neutral unit. These neutral units are linked together by N1···O7 (-1/2 + x,1/2 - y,-1/2 + z) and O1···O6 (1/2 + x,1/2 - y,-1/2 + z) hydrogen bonds related by the n-glide plane at y =1/4, forming a two-dimensional layer parallel to the (010) plane in the domain of -0.259 < y < 0.759 (Fig.2). Secondly, by π–π stacking interactions, adjacent two-dimensional layers are interlinked into a simple three-dimensional network. The geometric details of the π–π stacking interactions are listed in Table 2. A CSD (Version 1.9, September 2006 release; Allen, 2002; Bruno et al., 2002) study indicates that π–π stacking interactions play a critical role in stabilizing the crystal structures of organic and metal-organic compounds containing poly-bzim groups. For instance, in HIDB+.ClO4- (Liu et al., 2004), the N—H···N and N—H···O hydrogen bonds link the component ions into one-dimensional chains. However, π–π stacking interactions between adjacent bzim groups link the molecules into a three-dimensional network.

Experimental

All the reagents and solvents were used as obtained without further purification. Bis(benzimidazol-2-yl-methyl)amine (IDB) was prepared according to the method described by Adams et al. (1990). 2 g of the powdered title compound were dissolved in 15 ml methanol and adjusted to pH 5 using HClO4. Colorless crystals were obtained as blocks by slowly evaporating the solvent over a period of several days.

Refinement

H atoms bonded to C atoms were located in difference maps and subsequently treated as riding, with C—H distances of 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96 Å (methyl); Uiso(H) = 1.2Ueq(aromatic and methylene C) or 1.5Ueq(methyl C). H atoms bonded to N and methanol O atoms were also found in difference maps, and refined with restraints of N—H = 0.86 (2) Å and O—H = 0.82 (2) Å; Uiso(H) values were set equal to k times those of their carrier atoms (k=1.2 for N and 1.5 for O atoms)

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms as spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines.
Fig. 2.
Part of the crystal structure of the title compound, showing the formation of the two-dimensional network parallel to the (010) plane, built from N—H···O and O—H···O hydrogen bonds which ...

Crystal data

C16H17N52+·2ClO4·CH4OF000 = 1056
Mr = 510.29Dx = 1.558 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7139 reflections
a = 8.3359 (4) Åθ = 2.3–25.2º
b = 18.0323 (8) ŵ = 0.36 mm1
c = 14.8532 (7) ÅT = 295 (2) K
β = 102.944 (1)ºBlock, colorless
V = 2175.89 (18) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer4957 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3479 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.069
T = 295(2) Kθmax = 27.5º
0.3° wide ω exposures scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997)h = −10→10
Tmin = 0.900, Tmax = 0.932k = −23→21
24553 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169  w = 1/[σ2(Fo2) + (0.1086P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4957 reflectionsΔρmax = 0.26 e Å3
317 parametersΔρmin = −0.23 e Å3
5 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2809 (3)0.30786 (14)0.38370 (17)0.0497 (6)
H1A0.18090.28880.39830.060*
H1B0.35860.31830.44140.060*
C20.3517 (3)0.25067 (13)0.33135 (15)0.0396 (5)
C30.4580 (3)0.14439 (14)0.29713 (16)0.0426 (5)
C40.5154 (3)0.07295 (14)0.29609 (19)0.0519 (6)
H40.51080.03940.34300.062*
C50.5799 (3)0.05391 (15)0.2218 (2)0.0582 (7)
H50.62250.00650.21900.070*
C60.5829 (4)0.10337 (16)0.1514 (2)0.0605 (7)
H60.62440.08750.10150.073*
C70.5271 (3)0.17525 (15)0.15176 (17)0.0520 (6)
H70.53150.20850.10450.062*
C80.4636 (3)0.19489 (13)0.22791 (15)0.0411 (5)
C90.2625 (4)0.44157 (14)0.38863 (18)0.0543 (7)
H9A0.33390.43070.44820.065*
H9B0.15600.45630.39870.065*
C100.3339 (3)0.50353 (14)0.34394 (15)0.0418 (5)
C110.4340 (3)0.61419 (13)0.32023 (16)0.0409 (5)
C120.4887 (3)0.68676 (14)0.32554 (17)0.0499 (6)
H120.48050.71750.37460.060*
C130.5561 (3)0.71112 (15)0.25419 (18)0.0541 (7)
H130.59600.75940.25550.065*
C140.5658 (3)0.66542 (15)0.18039 (18)0.0531 (6)
H140.60960.68450.13290.064*
C150.5131 (3)0.59301 (14)0.17489 (17)0.0489 (6)
H150.52130.56250.12560.059*
C160.4468 (3)0.56799 (13)0.24711 (15)0.0393 (5)
C170.2881 (5)0.3822 (2)0.0512 (2)0.0840 (11)
H17A0.17770.38900.05880.126*
H17B0.29650.33520.02230.126*
H17C0.31510.42120.01320.126*
Cl10.24642 (8)0.62635 (4)0.59521 (4)0.0481 (2)
Cl20.31148 (8)0.10820 (3)0.57634 (4)0.0464 (2)
N10.2440 (3)0.37571 (11)0.33106 (14)0.0445 (5)
H10.145 (4)0.3694 (14)0.2981 (19)0.053*
N20.3856 (3)0.18181 (11)0.36014 (13)0.0445 (5)
H2A0.358 (3)0.1635 (15)0.4057 (14)0.053*
N30.3963 (2)0.26023 (11)0.25234 (13)0.0418 (5)
H3A0.388 (3)0.3016 (10)0.2272 (16)0.050*
N40.3827 (2)0.49959 (11)0.26472 (13)0.0430 (5)
H4A0.380 (3)0.4598 (11)0.2328 (15)0.052*
N50.3622 (3)0.57129 (12)0.37846 (13)0.0445 (5)
H5A0.326 (3)0.5852 (15)0.4229 (14)0.053*
O10.3990 (2)0.38398 (9)0.13891 (12)0.0471 (4)
H1C0.493 (2)0.3935 (16)0.138 (2)0.071*
O20.3285 (3)0.62766 (13)0.68957 (15)0.0858 (7)
O30.0789 (3)0.63840 (17)0.58637 (17)0.1044 (9)
O40.3121 (3)0.67790 (18)0.5420 (2)0.1118 (10)
O50.2696 (4)0.55666 (15)0.55727 (18)0.1208 (11)
O60.1832 (3)0.06270 (12)0.59527 (17)0.0829 (7)
O70.4415 (3)0.11275 (12)0.65578 (14)0.0788 (7)
O80.3685 (3)0.07408 (13)0.50223 (13)0.0738 (6)
O90.2500 (3)0.17971 (12)0.54776 (17)0.0911 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0628 (17)0.0430 (14)0.0466 (13)−0.0040 (12)0.0194 (12)0.0000 (11)
C20.0370 (12)0.0417 (13)0.0399 (11)−0.0063 (10)0.0083 (9)0.0020 (10)
C30.0385 (13)0.0436 (14)0.0443 (12)−0.0009 (10)0.0063 (10)0.0023 (10)
C40.0530 (16)0.0385 (14)0.0611 (15)−0.0012 (12)0.0063 (12)0.0027 (12)
C50.0556 (17)0.0457 (16)0.0699 (18)0.0077 (13)0.0071 (14)−0.0067 (13)
C60.0521 (17)0.0680 (19)0.0644 (17)0.0004 (14)0.0195 (14)−0.0169 (15)
C70.0494 (15)0.0573 (17)0.0523 (14)−0.0034 (12)0.0179 (12)−0.0014 (12)
C80.0393 (13)0.0391 (13)0.0448 (12)−0.0058 (10)0.0090 (10)−0.0014 (10)
C90.0732 (18)0.0445 (15)0.0523 (14)0.0051 (13)0.0293 (13)0.0020 (11)
C100.0393 (13)0.0446 (14)0.0425 (11)0.0077 (10)0.0111 (9)0.0020 (10)
C110.0379 (13)0.0408 (13)0.0434 (12)0.0064 (10)0.0080 (10)−0.0020 (10)
C120.0479 (15)0.0427 (14)0.0573 (15)0.0036 (11)0.0077 (12)−0.0119 (11)
C130.0505 (16)0.0418 (15)0.0689 (17)−0.0020 (12)0.0110 (13)0.0017 (12)
C140.0544 (16)0.0513 (16)0.0579 (15)0.0056 (12)0.0217 (12)0.0084 (12)
C150.0526 (16)0.0464 (15)0.0514 (14)0.0049 (12)0.0199 (12)−0.0006 (11)
C160.0389 (12)0.0353 (13)0.0444 (12)0.0070 (9)0.0108 (10)−0.0002 (9)
C170.073 (2)0.125 (3)0.0535 (17)0.0090 (19)0.0120 (16)0.0070 (17)
Cl10.0421 (4)0.0612 (4)0.0436 (3)−0.0032 (3)0.0155 (3)−0.0038 (3)
Cl20.0510 (4)0.0450 (4)0.0454 (3)0.0006 (3)0.0152 (3)0.0041 (2)
N10.0399 (12)0.0494 (13)0.0428 (11)0.0018 (9)0.0065 (9)0.0017 (9)
N20.0504 (12)0.0419 (12)0.0428 (10)−0.0047 (9)0.0136 (9)0.0048 (9)
N30.0438 (11)0.0364 (11)0.0450 (11)−0.0017 (9)0.0099 (9)0.0074 (8)
N40.0492 (12)0.0371 (11)0.0450 (10)0.0043 (9)0.0157 (9)−0.0054 (8)
N50.0499 (12)0.0450 (12)0.0419 (11)0.0085 (9)0.0171 (9)−0.0037 (9)
O10.0502 (11)0.0517 (11)0.0431 (9)−0.0006 (8)0.0184 (8)0.0030 (7)
O20.0842 (17)0.118 (2)0.0479 (12)−0.0101 (13)−0.0010 (11)−0.0106 (11)
O30.0471 (14)0.181 (3)0.0882 (17)0.0107 (15)0.0230 (12)0.0009 (16)
O40.0934 (19)0.131 (2)0.1124 (19)−0.0257 (16)0.0253 (16)0.0449 (17)
O50.195 (3)0.090 (2)0.0883 (17)0.0224 (19)0.0562 (19)−0.0256 (14)
O60.0794 (15)0.0663 (15)0.1205 (18)−0.0110 (11)0.0595 (14)−0.0011 (12)
O70.0794 (16)0.0883 (16)0.0576 (12)0.0054 (12)−0.0081 (11)−0.0067 (10)
O80.0842 (15)0.0842 (15)0.0617 (12)−0.0034 (12)0.0350 (11)−0.0092 (11)
O90.119 (2)0.0498 (13)0.0938 (17)0.0148 (13)0.0018 (14)0.0128 (11)

Geometric parameters (Å, °)

N1—C11.448 (3)C11—C161.392 (3)
N1—C91.451 (3)C12—C131.378 (3)
N2—C21.323 (3)C12—H120.9300
N2—C31.396 (3)C13—C141.388 (4)
N3—C21.320 (3)C13—H130.9300
N3—C81.388 (3)C14—C151.374 (4)
N4—C101.330 (3)C14—H140.9300
N4—C161.392 (3)C15—C161.388 (3)
N5—C101.326 (3)C15—H150.9300
N5—C111.392 (3)C17—O11.419 (4)
C1—C21.491 (3)C17—H17A0.9600
C1—H1A0.9700C17—H17B0.9600
C1—H1B0.9700C17—H17C0.9600
C3—C41.375 (3)Cl1—O31.390 (2)
C3—C81.382 (3)Cl1—O41.408 (2)
C4—C51.375 (4)Cl1—O51.408 (2)
C4—H40.9300Cl1—O21.416 (2)
C5—C61.379 (4)Cl2—O71.414 (2)
C5—H50.9300Cl2—O91.417 (2)
C6—C71.377 (4)Cl2—O61.425 (2)
C6—H60.9300Cl2—O81.4320 (19)
C7—C81.398 (3)N1—H10.86 (3)
C7—H70.9300N2—H2A0.831 (16)
C9—C101.490 (3)N3—H3A0.831 (16)
C9—H9A0.9700N4—H4A0.857 (16)
C9—H9B0.9700N5—H5A0.824 (16)
C11—C121.382 (3)O1—H1C0.805 (17)
N1—C1—C2111.35 (19)C14—C13—H13119.2
N1—C1—H1A109.4C15—C14—C13122.4 (2)
C2—C1—H1A109.4C15—C14—H14118.8
N1—C1—H1B109.4C13—C14—H14118.8
C2—C1—H1B109.4C14—C15—C16116.1 (2)
H1A—C1—H1B108.0C14—C15—H15121.9
N3—C2—N2109.1 (2)C16—C15—H15121.9
N3—C2—C1126.7 (2)C15—C16—C11121.5 (2)
N2—C2—C1124.2 (2)C15—C16—N4132.0 (2)
C4—C3—C8122.6 (2)C11—C16—N4106.50 (19)
C4—C3—N2131.6 (2)O1—C17—H17A109.5
C8—C3—N2105.8 (2)O1—C17—H17B109.5
C5—C4—C3116.3 (2)H17A—C17—H17B109.5
C5—C4—H4121.9O1—C17—H17C109.5
C3—C4—H4121.9H17A—C17—H17C109.5
C4—C5—C6121.6 (3)H17B—C17—H17C109.5
C4—C5—H5119.2O3—Cl1—O4110.65 (18)
C6—C5—H5119.2O3—Cl1—O5109.08 (19)
C7—C6—C5122.8 (3)O4—Cl1—O5105.00 (19)
C7—C6—H6118.6O3—Cl1—O2110.09 (15)
C5—C6—H6118.6O4—Cl1—O2112.49 (16)
C6—C7—C8115.5 (2)O5—Cl1—O2109.37 (16)
C6—C7—H7122.2O7—Cl2—O9110.80 (14)
C8—C7—H7122.2O7—Cl2—O6109.72 (15)
C3—C8—N3106.4 (2)O9—Cl2—O6110.25 (16)
C3—C8—C7121.1 (2)O7—Cl2—O8110.00 (14)
N3—C8—C7132.5 (2)O9—Cl2—O8108.70 (14)
N1—C9—C10110.6 (2)O6—Cl2—O8107.30 (13)
N1—C9—H9A109.5C1—N1—C9113.1 (2)
C10—C9—H9A109.5C1—N1—H1104.8 (17)
N1—C9—H9B109.5C9—N1—H1113.8 (17)
C10—C9—H9B109.5C2—N2—C3109.28 (19)
H9A—C9—H9B108.1C2—N2—H2A123.9 (19)
N5—C10—N4109.1 (2)C3—N2—H2A126.5 (19)
N5—C10—C9125.0 (2)C2—N3—C8109.43 (19)
N4—C10—C9125.9 (2)C2—N3—H3A120.5 (18)
C12—C11—N5132.3 (2)C8—N3—H3A129.9 (18)
C12—C11—C16122.0 (2)C10—N4—C16109.0 (2)
N5—C11—C16105.7 (2)C10—N4—H4A123.9 (17)
C13—C12—C11116.4 (2)C16—N4—H4A127.0 (17)
C13—C12—H12121.8C10—N5—C11109.64 (19)
C11—C12—H12121.8C10—N5—H5A121.6 (19)
C12—C13—C14121.6 (2)C11—N5—H5A127.9 (19)
C12—C13—H13119.2C17—O1—H1C115 (2)
N1—C1—C2—N37.9 (4)C12—C11—C16—C15−1.0 (4)
N1—C1—C2—N2−174.9 (2)N5—C11—C16—C15179.7 (2)
C8—C3—C4—C50.2 (4)C12—C11—C16—N4179.1 (2)
N2—C3—C4—C5179.7 (2)N5—C11—C16—N4−0.1 (2)
C3—C4—C5—C6−1.5 (4)C2—C1—N1—C9−148.2 (2)
C4—C5—C6—C72.1 (4)C10—C9—N1—C1142.0 (2)
C5—C6—C7—C8−1.2 (4)N3—C2—N2—C30.7 (3)
C4—C3—C8—N3−179.8 (2)C1—C2—N2—C3−176.9 (2)
N2—C3—C8—N30.6 (2)C4—C3—N2—C2179.7 (3)
C4—C3—C8—C70.7 (4)C8—C3—N2—C2−0.8 (3)
N2—C3—C8—C7−178.9 (2)N2—C2—N3—C8−0.3 (3)
C6—C7—C8—C3−0.2 (4)C1—C2—N3—C8177.2 (2)
C6—C7—C8—N3−179.5 (3)C3—C8—N3—C2−0.2 (3)
N1—C9—C10—N5178.4 (2)C7—C8—N3—C2179.2 (2)
N1—C9—C10—N4−3.2 (4)N5—C10—N4—C160.3 (3)
N5—C11—C12—C13179.4 (2)C9—C10—N4—C16−178.2 (2)
C16—C11—C12—C130.3 (4)C15—C16—N4—C10−179.9 (2)
C11—C12—C13—C141.0 (4)C11—C16—N4—C10−0.1 (3)
C12—C13—C14—C15−1.6 (4)N4—C10—N5—C11−0.4 (3)
C13—C14—C15—C160.9 (4)C9—C10—N5—C11178.1 (2)
C14—C15—C16—C110.4 (4)C12—C11—N5—C10−178.8 (3)
C14—C15—C16—N4−179.8 (2)C16—C11—N5—C100.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.86 (3)2.42 (3)3.200 (3)150 (2)
N2—H2A···O80.831 (16)2.15 (2)2.895 (3)150 (3)
N2—H2A···O90.831 (16)2.489 (19)3.233 (3)150 (2)
N3—H3A···O10.831 (16)1.996 (17)2.799 (3)162 (2)
N4—H4A···O10.857 (16)1.985 (17)2.823 (3)166 (2)
N5—H5A···O40.824 (16)2.46 (2)3.197 (4)150 (2)
N5—H5A···O50.824 (16)2.21 (2)2.939 (3)147 (2)
O1—H1C···O6ii0.805 (17)2.00 (2)2.765 (3)159 (3)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z−1/2.

Table 2 Table 2 π–π Stacking interactions (°, Å)

CgiCgjDihedral angleCCDInterplanar spacing
Cg1Cg2iv0.423.854 (2)3.349 (2)
Cg1Cg4iv0.353.557 (2)3.354 (2)
Cg3Cg2iv0.853.612 (2)3.360 (2)
Cg3Cg4v0.363.929 (2)3.453 (2)

CCD is the centroid-to-centroid distance; Cg1 is the centroid of atoms N2/N3/C2/C3/C8; Cg2 is the centroid of atoms N4/N5/C10/C11/C16; Cg3 is the centroid of atoms C3–C8; Cg4 is the centroid of atoms C11–C16. symmetry codes: (iv) 1/2 - x, -1/2 + y,1/2 - z; (v) 1/2 - x, -1/2 + y,1/2 - z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2246).

References

  • Adams, H., Bailey, N. A., Carane, J. D., Fenton, D.-E., Latour, J.-M. & Williams, J. M. (1990). J. Chem. Soc. Dalton Trans. pp. 1727–1735.
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Berends, H. P. & Stephan, D. W. (1984). Inorg. Chim. Acta, 93, 173–178.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [PubMed]
  • Girasolo, M.-A., Pizzino, T., Mansueto, C., Valle, G. & Stocco, G.-C. (2000). Appl. Organomet. Chem.14, 197–211.
  • Liao, Z.-R., Zheng, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-L. & Zhao, W. (2001). Polyhedron, 20, 2813–2821.
  • Liu, X.-H., Sun, Y., Yue, J.-J. & Liu, X.-L. (2004). J. Tianjin Normal Univ. (Nat. Sci. Ed.), 24, 1–2.
  • Meng, X.-G., Mei, F.-S. & Liao, Z.-R. (2005). Acta Cryst. E61, o3047–o3049.
  • Meng, X.-G., Mei, F.-S. & Liao, Z.-R. (2006a). Acta Cryst. E62, o4120–o4122.
  • Meng, X.-G., Mei, F.-S. & Liao, Z.-R. (2006b). Acta Cryst. E62, o3989–o3991.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tarazon Navarro, A. & McKee, V. (2003). Acta Cryst. E59, o1199–o1201.
  • Xu, J.-Y., Tian, J.-L., Bian, H.-D., Yan, S.-P., Liao, D.-Z., Cheng, P. & Shen, P.-W. (2007). Appl. Organomet. Chem 21, 129–134.
  • Young, M.-J., Wahnon, D., Hynes, R.-C. & Chin, J. (1995). J. Am. Chem. Soc.117, 9441–9447.
  • Zheng, S.-R., Cai, Y.-P., Zhang, X.-L. & Su, C.-Y. (2005). Acta Cryst. C61, o642–o644. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography