PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o911.
Published online 2008 April 26. doi:  10.1107/S1600536808011434
PMCID: PMC2961232

3-Chloro­quinuclidinium chloride

Abstract

The cation of the title compound, C7H13ClN+·Cl, forms a linear hydrogen bond to the chloride anion. The cation is disordered about a mirror plane.

Related literature

For isomeric 4-chloro­quinuclidinium chloride, see: Kurahashi et al. (1980 [triangle]), which also reports the parent quinuclidinium chloride.

An external file that holds a picture, illustration, etc.
Object name is e-64-0o911-scheme1.jpg

Experimental

Crystal data

  • C7H13ClN+·Cl
  • M r = 182.10
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o911-efi1.jpg
  • a = 9.379 (1) Å
  • b = 8.067 (1) Å
  • c = 11.482 (2) Å
  • V = 868.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 100 (2) K
  • 0.15 × 0.08 × 0.03 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.872, T max = 1.000 (expected range = 0.855–0.980)
  • 5307 measured reflections
  • 1068 independent reflections
  • 856 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.113
  • S = 1.02
  • 1068 reflections
  • 82 parameters
  • 58 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011434/bq2068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011434/bq2068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for the purchase of the diffractometer.

supplementary crystallographic information

Comment

4-Chloroquinuclidinium chloride features an N–H···Cl hydrogen bond between the cation and anion. The N–C and C–C bonds are somewhat shorter than those in the unsubstituted salt, and this has been attributed to the electron-withdrawing effect of the chlorine substituent (Kurahashi et al., 1980). The present isomeric compound (Scheme I) is expected to show this feature; however, owing to disorder, the effect cannot be unambiguously observed even at low temperature. The cation forms a linear hydrogen bond [N–H···Cl 3.008 (3) Å] to the chloride; the cation is disordered about a mirror plane (Fig. 1).

Experimental

The commercially available compound was a crystalline. A large block was cut into a smaller specimen.

Refinement

The cation is disordered about a mirror plane in the carbon atoms except C1 atom. The N1 and C1 atoms, which lie on this symmetry element, were refined with their normal half occupancies. The other carbon atoms were refined with half occupancies, subject to N–C being restrained to 1.49±0.01 Å and C–C to 1.54±0.01 Å. Additionally, the 1,3-related distances were restrained from 2.43±0.01 Å, to 2.47±0.01 Å as well as 2.52±-0.01 Å. The anisotropic temperature factors of the disordered carbon were restrained to be nearly isotropic but the N–H distance was restrained to 0.88±0.01 Å.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 to 1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The ammonium H-atom was located in a difference Fourier map, and was refined with an N–H distance restraint of 0.88±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1.
Thermal ellipsoid plot of the two independent molecules of 2-chloroquinuclidinium chloride at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The dashed lines denote the hydrogen bond.

Crystal data

C7H13ClN+·ClF000 = 392
Mr = 182.10Dx = 1.408 Mg m3
Orthorhombic, PnmaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 909 reflections
a = 9.379 (1) Åθ = 3.1–22.9º
b = 8.067 (1) ŵ = 0.68 mm1
c = 11.482 (2) ÅT = 100 (2) K
V = 868.7 (2) Å3Block, colorless
Z = 40.15 × 0.08 × 0.03 mm

Data collection

Bruker SMART APEX diffractometer1068 independent reflections
Radiation source: fine-focus sealed tube856 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.047
T = 100(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −12→8
Tmin = 0.872, Tmax = 1.000k = −10→10
5307 measured reflectionsl = −14→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0562P)2 + 0.8408P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
1068 reflectionsΔρmax = 0.31 e Å3
82 parametersΔρmin = −0.57 e Å3
58 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl10.69230 (8)0.25000.57828 (7)0.0218 (2)
Cl20.10483 (11)0.25000.30411 (8)0.0374 (3)
N10.3718 (3)0.25000.5682 (2)0.0190 (6)
H10.4648 (12)0.25000.576 (3)0.035 (12)*
C10.3382 (3)0.25000.4416 (3)0.0331 (9)
H1A0.40920.18320.39830.040*0.50
H1B0.33970.36450.41060.040*0.50
C20.1846 (4)0.1722 (5)0.4282 (3)0.0184 (9)0.50
H20.19470.04950.41940.022*
C30.2957 (7)0.3924 (13)0.6253 (9)0.0204 (17)0.50
H3A0.33970.49880.60190.024*0.50
H3B0.30130.38250.71110.024*0.50
C40.1402 (5)0.3855 (6)0.5851 (5)0.0212 (11)0.50
H4A0.12480.46530.52090.025*0.50
H4B0.07630.41590.65030.025*0.50
C50.3285 (7)0.0917 (13)0.6251 (10)0.024 (2)0.50
H5A0.36980.08570.70430.029*0.50
H5B0.3651−0.00340.57950.029*0.50
C60.1650 (5)0.0823 (7)0.6325 (4)0.0244 (12)0.50
H6A0.13230.11110.71200.029*0.50
H6B0.1316−0.03100.61390.029*0.50
C70.1058 (4)0.2079 (5)0.5430 (4)0.0205 (12)0.50
H70.00070.19310.53300.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0157 (4)0.0284 (4)0.0212 (4)0.000−0.0006 (3)0.000
Cl20.0340 (5)0.0546 (6)0.0236 (5)0.000−0.0111 (4)0.000
N10.0145 (13)0.0241 (13)0.0184 (14)0.000−0.0020 (10)0.000
C10.0176 (17)0.064 (3)0.0182 (19)0.0000.0006 (13)0.000
C20.019 (2)0.0171 (19)0.019 (2)0.0018 (17)−0.0032 (16)0.0013 (17)
C30.019 (3)0.017 (3)0.025 (3)−0.004 (3)0.008 (3)0.004 (2)
C40.015 (2)0.022 (3)0.026 (3)0.004 (2)−0.004 (2)−0.006 (2)
C50.017 (3)0.019 (3)0.036 (4)0.000 (3)0.007 (3)−0.001 (3)
C60.028 (3)0.026 (3)0.019 (3)−0.003 (2)−0.002 (2)0.004 (2)
C70.0108 (17)0.030 (4)0.021 (2)−0.0037 (16)0.0014 (15)−0.0070 (18)

Geometric parameters (Å, °)

Cl2—C21.727 (4)C3—H3B0.9900
N1—C51.491 (7)C4—C71.546 (6)
N1—C11.488 (4)C4—H4A0.9900
N1—C31.502 (7)C4—H4B0.9900
N1—H10.88 (1)C5—C61.538 (7)
C1—C21.579 (4)C5—H5A0.9900
C1—H1A0.9900C5—H5B0.9900
C1—H1B0.9900C6—C71.546 (5)
C2—C71.539 (5)C6—H6A0.9900
C2—H21.0000C6—H6B0.9900
C3—C41.531 (7)C7—H71.0000
C3—H3A0.9900
C5—N1—C1111.7 (5)C3—C4—C7109.1 (4)
C5—N1—C3109.5 (3)C3—C4—H4A109.9
C1—N1—C3109.0 (4)C7—C4—H4A109.9
C5—N1—H1103.1 (13)C3—C4—H4B109.9
C1—N1—H1108 (3)C7—C4—H4B109.9
C3—N1—H1115.3 (14)H4A—C4—H4B108.3
N1—C1—C2106.8 (2)N1—C5—C6109.8 (5)
N1—C1—H1A110.4N1—C5—H5A109.7
C2—C1—H1A110.4C6—C5—H5A109.7
N1—C1—H1B110.4N1—C5—H5B109.7
C2—C1—H1B110.4C6—C5—H5B109.7
H1A—C1—H1B108.6H5A—C5—H5B108.2
C7—C2—C1106.3 (3)C5—C6—C7106.8 (4)
C7—C2—Cl2115.5 (3)C5—C6—H6A110.4
C1—C2—Cl2109.4 (2)C7—C6—H6A110.4
C7—C2—H2108.5C5—C6—H6B110.4
C1—C2—H2108.5C7—C6—H6B110.4
Cl2—C2—H2108.5H6A—C6—H6B108.6
N1—C3—C4107.1 (4)C2—C7—C4109.9 (3)
N1—C3—H3A110.3C2—C7—C6106.0 (3)
C4—C3—H3A110.3C4—C7—C6108.9 (3)
N1—C3—H3B110.3C2—C7—H7110.6
C4—C3—H3B110.3C4—C7—H7110.6
H3A—C3—H3B108.6C6—C7—H7110.6
C5—N1—C1—C242.7 (4)N1—C5—C6—C718.9 (10)
C3—N1—C1—C2−78.5 (4)C1—C2—C7—C440.7 (4)
N1—C1—C2—C727.3 (3)Cl2—C2—C7—C4−80.8 (4)
N1—C1—C2—Cl2152.63 (17)C1—C2—C7—C6−76.9 (4)
C5—N1—C3—C4−73.4 (6)Cl2—C2—C7—C6161.6 (3)
C1—N1—C3—C449.1 (8)C3—C4—C7—C2−70.0 (6)
N1—C3—C4—C721.4 (9)C3—C4—C7—C645.7 (6)
C1—N1—C5—C6−71.2 (9)C5—C6—C7—C249.6 (7)
C3—N1—C5—C649.7 (7)C5—C6—C7—C4−68.6 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.88 (1)2.13 (1)3.008 (3)175 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2068).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kurahashi, M., Engel, P. & Nowacki, W. (1980). Z. Kristallogr.152, 147–156.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography