PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o842.
Published online 2008 April 16. doi:  10.1107/S1600536808009185
PMCID: PMC2961231

(R)-(−)-3-Hydroxy­quinuclidinium chloride

Abstract

The quinuclidinium cation of the title compound, C7H14NO+·Cl, shows a twist along the C—N pseudo-threefold axis, with N—C—C—C torsion angles of −16.0 (1), −16.9 (1) and −15.6 (1)°. The crystal structure is stabilized by N—H(...)Cl and O—H(...)Cl hydrogen bonds, forming infinite chains along the a and b axes.

Related literature

For related literature see: Carroll et al. (1991 [triangle]); Erman et al. (1994 [triangle]); Frackenpohl & Hoffmann (2000 [triangle]); Bosak et al. (2005 [triangle]); Lis & Jeżowska-Trzebiatowska (1976 [triangle]); Lis et al. (1975 [triangle]); Morrow (1962 [triangle]); Noddack & Noddack (1933 [triangle]); Sterling et al. (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o842-scheme1.jpg

Experimental

Crystal data

  • C7H14NO+·Cl
  • M r = 163.64
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0o842-efi1.jpg
  • a = 6.655 (3) Å
  • c = 18.145 (9) Å
  • V = 803.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 100 (2) K
  • 0.50 × 0.34 × 0.08 mm

Data collection

  • Kuma KM-4 CCD κ-geometry diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.86, T max = 0.97
  • 11241 measured reflections
  • 3310 independent reflections
  • 3128 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.063
  • S = 1.00
  • 3310 reflections
  • 92 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1361 Friedel pairs
  • Flack parameter: −0.01 (3)

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009185/pk2091sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009185/pk2091Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Since the first synthesis of potassium µ-oxo-bis[pentachlororhenate(IV)] (Noddack & Noddack, 1933) numerous efforts have been undertaken to quantitatively describe its structure. To the present day only one structure of [Re2OCl10]4- with potassium cations and one of its oxidized form, [Re2OCl10]3-, with caesium cations have been successfully determined by X-Ray crystallography (Morrow, 1962; Lis & Jeżowska-Trzebiatowska, 1976; Lis et al., 1975;). Our structural studies on [Re2OCl10]4- and [Re2OCl10]3- have shown that the appropriate choice of cation is crucial to obtain good structural parameters for the anion unit. The most suitable properties of the cation are low symmetry, chirality and the ability to form hydrogen bonds. All these requirements are fulfilled by (R)-(–)-3-hydroxyquinuclidinium cation. Quinuclidinium derivatives have been of interest due to their biological activity, especially as a acetylcholinesterase inhibitor (Bosak et al., 2005). It was also proven that quinuclidinium salts protected rats against the toxicity of soman and tabun (Sterling et al., 1988). Aside from the present study, the only other known structure of (R)-(–)-3-hydroxyquinuclidinium was with (R,R)-tartrate anion (Erman et al., 1994).

The asymmetric unit of the crystal (Fig. 1) consists of a (R)-(–)-3-hydroxyquinuclidinium cation and a chloride anion. The quinuclidine moiety has almost exact threefold symmetry about N1–C4, and the two subunits (N1, C2, C6, C7 and C4, C3, C5, C8) are twisted about this axis. The deformation of quinuclidinium cation is reflected in the values of the N1—C2—C3—C4, N1—C6—C5—C4, N1—C7—C8—C4 torsion angles, which are -16.0 (1)° -16.9 (1)° -15.6 (1)°, respectively. Similar rotation has also been observed, but with slightly smaller angles, in 3-hydroxyquinuclidinium tartrate (Erman et al., 1994). The bond lengths of the cation are all normal and are in good agreement with quinuclidinium derivatives (Carroll et al., 1991; Erman et al., 1994; Frackenpohl & Hoffmann, 2000). The anion is surrounded by six symmetry-related cations that act as hydrogen bond acceptors for O—H and N—H groups. The hydrogen bonds link cations and anions into infinite chains running in the a and b axis directions (Figs. 2,3).

Experimental

The title compound was obtained from a commercial source (Aldrich) and dissolved in hot methanol. Colourless crystals grew from the solution after a few hours.

Refinement

The H atoms firstly were all located in difference maps, then set in calculated positions and refined as riding atoms [C—H = 0.99–1.00 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O)].

Figures

Fig. 1.
A view of (R)-(-)-3-hydroxyquinuclidinium cation with atom labelling scheme. The thermal displacement ellipsoids are drawn at 30% probability level.
Fig. 2.
A view of molecular packing showing chains formed along a and b directions. The hydrogen bonds are shown as dashed lines. The H atoms not involved in any interaction are omitted for clarity.
Fig. 3.
A view of (R)-(-)-3-hydroxyquinuclidinium cations and chloride anion forming hydrogen bonds. The thermal displacement ellipsoids are drawn at 30% probability level. Symmetry code: [ii] x + 1,y,z.

Crystal data

C7H14NO+·ClZ = 4
Mr = 163.64F000 = 352
Tetragonal, P41Dx = 1.353 Mg m3
Hall symbol: P 4wMo Kα radiation λ = 0.71073 Å
a = 6.655 (3) ÅCell parameters from 11099 reflections
b = 6.655 (3) Åθ = 3.3–36.6º
c = 18.145 (9) ŵ = 0.41 mm1
α = 90ºT = 100 (2) K
β = 90ºPlate, colorless
γ = 90º0.50 × 0.34 × 0.08 mm
V = 803.6 (6) Å3

Data collection

Kuma KM-4-CCD κ-geometry diffractometer3310 independent reflections
Radiation source: medium-focus sealed tube3128 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 100(2) Kθmax = 36.7º
ω scansθmin = 3.3º
Absorption correction: analytical(CrysAlis RED; Oxford Diffraction, 2007)h = −11→8
Tmin = 0.86, Tmax = 0.97k = −8→11
11241 measured reflectionsl = −23→30

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026  w = 1/[σ2(Fo2) + (0.0453P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.36 e Å3
3310 reflectionsΔρmin = −0.20 e Å3
92 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1261 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.85575 (3)0.53610 (3)0.500252 (12)0.01541 (5)
O10.08282 (10)0.92929 (11)0.46762 (4)0.01799 (13)
H110.02530.81800.47320.027*
N10.56591 (11)0.89016 (11)0.51704 (4)0.01256 (13)
H10.65930.78620.51670.015*
C20.36697 (13)0.80978 (13)0.54256 (5)0.01451 (15)
H210.37450.77440.59550.017*
H220.33270.68690.51450.017*
C30.20359 (12)0.97096 (13)0.53048 (5)0.01341 (14)
H30.11630.97970.57520.016*
C40.30861 (12)1.17237 (13)0.51807 (5)0.01337 (14)
H40.20841.28430.51850.016*
C50.46336 (13)1.20182 (13)0.57991 (5)0.01436 (15)
H520.39901.17950.62840.017*
H510.51611.34090.57870.017*
C60.63647 (13)1.05125 (14)0.56902 (5)0.01397 (15)
H610.75531.12060.54830.017*
H620.67480.99120.61690.017*
C70.54836 (14)0.97482 (14)0.44064 (5)0.01571 (16)
H710.48430.87530.40760.019*
H720.68351.00640.42100.019*
C80.42035 (14)1.16677 (14)0.44410 (5)0.01546 (15)
H820.50771.28650.43940.019*
H810.32261.16800.40300.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.01498 (9)0.01326 (9)0.01800 (9)0.00201 (7)0.00182 (7)0.00096 (7)
O10.0151 (3)0.0194 (3)0.0195 (3)−0.0034 (2)−0.0051 (2)−0.0014 (2)
N10.0121 (3)0.0123 (3)0.0133 (3)0.0018 (2)0.0001 (2)0.0000 (2)
C20.0139 (3)0.0126 (3)0.0171 (4)−0.0022 (3)−0.0003 (3)0.0018 (3)
C30.0103 (3)0.0151 (3)0.0149 (3)−0.0010 (3)−0.0001 (3)−0.0015 (3)
C40.0122 (3)0.0112 (3)0.0167 (4)0.0016 (2)−0.0018 (3)−0.0008 (3)
C50.0136 (3)0.0137 (3)0.0157 (4)0.0002 (3)−0.0010 (3)−0.0024 (3)
C60.0125 (3)0.0148 (3)0.0146 (4)−0.0001 (3)−0.0027 (3)−0.0011 (3)
C70.0165 (4)0.0195 (4)0.0111 (3)0.0023 (3)0.0017 (3)0.0007 (3)
C80.0158 (4)0.0163 (4)0.0143 (4)0.0005 (3)−0.0013 (3)0.0034 (3)

Geometric parameters (Å, °)

O1—C31.4227 (11)C4—C51.5355 (13)
O1—H110.8400C4—H41.0000
N1—C71.5009 (13)C5—C61.5396 (13)
N1—C21.5011 (12)C5—H520.9900
N1—C61.5031 (12)C5—H510.9900
N1—H10.9300C6—H610.9900
C2—C31.5430 (13)C6—H620.9900
C2—H210.9900C7—C81.5367 (14)
C2—H220.9900C7—H710.9900
C3—C41.5284 (13)C7—H720.9900
C3—H31.0000C8—H820.9900
C4—C81.5349 (14)C8—H810.9900
C3—O1—H11109.5C4—C5—C6108.97 (7)
C7—N1—C2110.49 (7)C4—C5—H52109.9
C7—N1—C6109.64 (7)C6—C5—H52109.9
C2—N1—C6109.64 (7)C4—C5—H51109.9
C7—N1—H1109.0C6—C5—H51109.9
C2—N1—H1109.0H52—C5—H51108.3
C6—N1—H1109.0N1—C6—C5108.12 (6)
N1—C2—C3109.27 (7)N1—C6—H61110.1
N1—C2—H21109.8C5—C6—H61110.1
C3—C2—H21109.8N1—C6—H62110.1
N1—C2—H22109.8C5—C6—H62110.1
C3—C2—H22109.8H61—C6—H62108.4
H21—C2—H22108.3N1—C7—C8108.51 (7)
O1—C3—C4108.13 (7)N1—C7—H71110.0
O1—C3—C2112.11 (7)C8—C7—H71110.0
C4—C3—C2107.96 (7)N1—C7—H72110.0
O1—C3—H3109.5C8—C7—H72110.0
C4—C3—H3109.5H71—C7—H72108.4
C2—C3—H3109.5C4—C8—C7108.93 (7)
C3—C4—C8109.21 (7)C4—C8—H82109.9
C3—C4—C5108.12 (7)C7—C8—H82109.9
C8—C4—C5108.49 (8)C4—C8—H81109.9
C3—C4—H4110.3C7—C8—H81109.9
C8—C4—H4110.3H82—C8—H81108.3
C5—C4—H4110.3
C7—N1—C2—C3−50.50 (9)C8—C4—C5—C6−48.56 (9)
C6—N1—C2—C370.45 (9)C7—N1—C6—C571.20 (8)
N1—C2—C3—O1102.96 (9)C2—N1—C6—C5−50.27 (9)
N1—C2—C3—C4−16.03 (9)C4—C5—C6—N1−16.88 (9)
O1—C3—C4—C8−53.44 (9)C2—N1—C7—C869.13 (9)
C2—C3—C4—C868.06 (9)C6—N1—C7—C8−51.82 (9)
O1—C3—C4—C5−171.30 (7)C3—C4—C8—C7−49.82 (9)
C2—C3—C4—C5−49.80 (9)C5—C4—C8—C767.81 (9)
C3—C4—C5—C669.77 (9)N1—C7—C8—C4−15.62 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Cl0.932.143.060 (2)171
O1—H11···Cli0.842.243.079 (2)173

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2091).

References

  • Bosak, A., Primožič, I., Oršulić, M., Tomić, S. & Simeon-Rudolf, V. (2005). Croat. Chem. Acta, 78, 121–128.
  • Carroll, F. I., Abraham, P., Gaetano, K., Mascarella, S. W., Wohl, R. A., Lind, J. & Petzoldt, K. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 3017–3026.
  • Erman, L. Ya., Mindrul, V. F., Mikhaleva, I. L., Pankov, D. I. & Kurochkin, V. K. (1994). Zh. Strukt. Khim.35, 161–163.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Frackenpohl, J. & Hoffmann, H. M. R. (2000). J. Org. Chem.65, 3982–3996. [PubMed]
  • Lis, T., Głowiak, T. & Jeżowska-Trzebiatowska, B. (1975). Bull. Pol. Acad. Sci. Chem.23, 739–743.
  • Lis, T. & Jeżowska-Trzebiatowska, B. (1976). Acta Cryst. B32, 867–869.
  • Morrow, J. C. (1962). Acta Cryst.15, 851–855.
  • Noddack, V. I. & Noddack, W. (1933). Z. Anorg. Allg. Chem.215, 129–184.
  • Oxford Diffraction (2007). CrysAlis RED and CrysAlis CCD Oxford Diffraction Poland, Wrocław, Poland.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sterling, G. H., Doukas, P. H., Sheldon, R. J. & O’Neill, J. J. (1988). Biochem. Pharmacol.37, 379–384. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography