PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o891.
Published online 2008 April 23. doi:  10.1107/S1600536808010623
PMCID: PMC2961216

1,6,6-Trimethyl-1H-chromeno[6,7-d]thia­zol-2(6H)-one

Abstract

The title compound, C13H13NO2S, was prepared by a thermocyclization reaction from 3-methyl-6-(2-methyl­but-3-yn-2-yl­oxy)benzo[d]thia­zol-2(3H)-one. In the crystal structure, the methyl­thia­zole unit is planar, while the pyran ring assumes a screw-boat conformation. Intra­molecular C—H(...)O hydrogen bonding helps to stabilize the molecular structure.

Related literature

For general background, see: Gunatilaka et al. (1994 [triangle]); Ucar et al. (1998 [triangle]). For details of the synthesis, see: Delhomel et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o891-scheme1.jpg

Experimental

Crystal data

  • C13H13NO2S
  • M r = 247.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o891-efi1.jpg
  • a = 7.376 (2) Å
  • b = 8.395 (2) Å
  • c = 10.536 (2) Å
  • α = 106.13 (2)°
  • β = 98.16 (2)°
  • γ = 94.08 (2)°
  • V = 616.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 298 (2) K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2765 measured reflections
  • 2207 independent reflections
  • 1387 reflections with I > 2σ(I)
  • R int = 0.023
  • 3 standard reflections frequency: 60 min intensity decay: 0.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.216
  • S = 1.05
  • 2207 reflections
  • 157 parameters
  • H-atom parameters constrained
  • Δρmax = 0.91 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1984 [triangle]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010623/xu2407sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010623/xu2407Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2,2-Dimethyl-2H-benzopyran fused thiazolone is a novel potential bioactive core (Gunatilaka et al. 1994; Ucar et al. 1998). As part of our research program on new antitumor and antiviral agents based on bioisosterism, we synthesized the title compound and report here its crystal structure (Fig. 1).

The compound is a three rings-fused heterocycle compound. The methyl thiazole moiety shows a planar structure. The pyran ring assumes a screw-boat conformation. The C6–C7 bond distance of 1.312 (5) Å indicates a typical C═C double bond. Intramolecular C—H···O hydrogen bonding helps to stabilize the crystal structure (Table 1 and Fig. 2).

Experimental

The title compound was synthesized by the thermo-cyclization reaction of 3-methyl-6-(2-methylbut-3-yn-2-yloxy)benzo[d]thiazol-2(3H)-one. A mixture of 6-hydroxy-3-methyl-2(3H)-benzothiazolone (508 mg, 2.6 mmol) (Delhomel et al. 2001), 3-methyl-3-chloro-but-1-yne (320 mg, 3.12 mmol) and K2CO3 (1.43 g, 10.4 mmol) was stirred in acetone (30 ml) for 5 h under reflux condition, then filtered and removed the solvent. To the residue was added N,N-diethylaniline (5 ml) and further refluxed for 2 h. The resulting solution was poured to ice water (100 ml) and extracted with acetyl acetate, and the organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was isolated by chromatography on silica gel column with petroleum ether/EtOAc (18/1) as eluent to afford the pure compound. The solid was collected and recrystallized from acetyl acetate to give colorless crystals which were available for the single-crystal X-ray diffraction analysis. Yield: 33.5%.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, and refined in riding mode with Uiso(H) =1.2Ueq(C) for aromatic H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing of (I), viewed down the c axis, showing one demensional supra-molecular chain connected by C—H···Oi hydrogen bonding [symmetry code: (i) = x, y + 1, z + 1). H atoms not involved in hydrogen bonding have been ...

Crystal data

C13H13NO2SZ = 2
Mr = 247.30F000 = 260
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Melting point = 376–378 K
a = 7.376 (2) ÅMo Kα radiation λ = 0.71073 Å
b = 8.395 (2) ÅCell parameters from 25 reflections
c = 10.536 (2) Åθ = 10.2–13.7º
α = 106.13 (2)ºµ = 0.25 mm1
β = 98.16 (2)ºT = 298 (2) K
γ = 94.08 (2)ºParallelepiped, colourless
V = 616.2 (3) Å30.20 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.023
Radiation source: fine-focus sealed tubeθmax = 25.2º
Monochromator: graphiteθmin = 2.0º
T = 298(2) Kh = −1→8
ω/2θ scansk = −10→10
Absorption correction: nonel = −12→12
2765 measured reflections3 standard reflections
2207 independent reflections every 60 min
1387 reflections with I > 2σ(I) intensity decay: 0.5%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.216  w = 1/[σ2(Fo2) + (0.1546P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2207 reflectionsΔρmax = 0.91 e Å3
157 parametersΔρmin = −0.68 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. 1H NMR (CDCl3, 400 MHz): δ 6.87 (s, 1H, 9-H); 6.64 (s, 1H, 4-H); 6.35 (1H, d, J = 9.78 Hz, 8-H); 5.68 (d, 1H, J = 9.78 Hz, 7-H); 3.40 (s, 3H, 1-CH3); 1.43 (s, 6H, 6-CH3). MS: m/z (%) 247 (M+, 22.17).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.72819 (14)0.52182 (13)−0.25523 (9)0.0529 (4)
N10.7791 (4)0.3420 (4)−0.0937 (3)0.0438 (7)
O10.8000 (4)0.2061 (4)−0.3119 (3)0.0670 (9)
O20.6410 (4)0.9748 (3)0.1700 (2)0.0456 (7)
C10.7748 (5)0.3288 (5)−0.2252 (4)0.0510 (10)
C20.8103 (5)0.2021 (5)−0.0421 (4)0.0572 (11)
H2A0.84030.1115−0.11140.086*
H2B0.70080.1671−0.01280.086*
H2C0.91050.23480.03210.086*
C30.7480 (4)0.4981 (4)−0.0139 (3)0.0383 (8)
C40.7478 (4)0.5454 (4)0.1217 (4)0.0410 (8)
H40.76950.46960.17030.049*
C50.7150 (4)0.7070 (4)0.1869 (3)0.0384 (8)
C60.7087 (5)0.7649 (5)0.3289 (4)0.0471 (9)
H60.70870.68910.37860.056*
C70.7028 (5)0.9237 (5)0.3877 (4)0.0509 (10)
H70.69380.95790.47820.061*
C80.7103 (5)1.0517 (4)0.3131 (3)0.0454 (9)
C90.9067 (6)1.1285 (5)0.3310 (4)0.0629 (12)
H9A0.98091.04370.29380.094*
H9B0.95341.17740.42480.094*
H9C0.91081.21320.28600.094*
C100.5804 (6)1.1829 (6)0.3549 (4)0.0661 (13)
H10A0.59121.26390.30680.099*
H10B0.61261.23740.44940.099*
H10C0.45581.13010.33490.099*
C110.6830 (4)0.8184 (4)0.1118 (3)0.0376 (8)
C120.6816 (5)0.7719 (4)−0.0248 (3)0.0403 (8)
H120.65860.8470−0.07390.048*
C130.7152 (5)0.6107 (4)−0.0871 (3)0.0407 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0508 (6)0.0578 (7)0.0427 (6)0.0037 (4)0.0053 (4)0.0046 (4)
N10.0257 (14)0.0416 (17)0.0569 (18)0.0002 (12)0.0024 (12)0.0056 (14)
O10.0605 (19)0.0622 (19)0.0608 (18)0.0140 (15)0.0033 (14)−0.0090 (15)
O20.0475 (15)0.0445 (14)0.0390 (13)0.0094 (11)−0.0031 (10)0.0073 (11)
C10.0264 (18)0.058 (2)0.052 (2)−0.0016 (16)−0.0012 (15)−0.0037 (18)
C20.032 (2)0.050 (2)0.082 (3)0.0036 (17)0.0020 (19)0.012 (2)
C30.0212 (15)0.0409 (19)0.0482 (19)−0.0024 (13)0.0028 (13)0.0083 (16)
C40.0258 (17)0.046 (2)0.050 (2)−0.0022 (14)−0.0010 (14)0.0166 (17)
C50.0239 (16)0.048 (2)0.0385 (18)−0.0033 (14)−0.0017 (13)0.0108 (15)
C60.042 (2)0.054 (2)0.045 (2)0.0060 (16)0.0023 (16)0.0151 (17)
C70.047 (2)0.065 (3)0.0359 (18)0.0069 (18)−0.0001 (16)0.0098 (18)
C80.041 (2)0.049 (2)0.0383 (19)0.0072 (16)−0.0015 (15)0.0032 (16)
C90.046 (2)0.066 (3)0.067 (3)−0.006 (2)−0.005 (2)0.013 (2)
C100.068 (3)0.072 (3)0.049 (2)0.029 (2)0.000 (2)0.003 (2)
C110.0227 (16)0.0403 (19)0.0435 (18)−0.0010 (13)−0.0011 (13)0.0065 (15)
C120.0338 (18)0.044 (2)0.0393 (18)−0.0031 (14)−0.0026 (14)0.0121 (15)
C130.0298 (17)0.044 (2)0.0401 (18)−0.0064 (14)−0.0014 (13)0.0060 (15)

Geometric parameters (Å, °)

S1—C131.740 (4)C5—C61.447 (5)
S1—C11.783 (4)C6—C71.312 (5)
N1—C11.354 (5)C6—H60.9300
N1—C31.401 (4)C7—C81.500 (5)
N1—C21.444 (5)C7—H70.9300
O1—C11.218 (4)C8—C91.507 (5)
O2—C111.364 (4)C8—C101.525 (5)
O2—C81.464 (4)C9—H9A0.9599
C2—H2A0.9599C9—H9B0.9599
C2—H2B0.9599C9—H9C0.9599
C2—H2C0.9599C10—H10A0.9599
C3—C41.373 (5)C10—H10B0.9599
C3—C131.389 (5)C10—H10C0.9599
C4—C51.395 (5)C11—C121.381 (5)
C4—H40.9300C12—C131.388 (5)
C5—C111.395 (5)C12—H120.9300
C13—S1—C191.10 (17)C8—C7—H7119.1
C1—N1—C3115.4 (3)O2—C8—C7110.5 (3)
C1—N1—C2121.4 (3)O2—C8—C9109.2 (3)
C3—N1—C2123.2 (3)C7—C8—C9109.5 (3)
C11—O2—C8118.1 (3)O2—C8—C10103.6 (3)
O1—C1—N1126.6 (4)C7—C8—C10111.9 (3)
O1—C1—S1123.7 (3)C9—C8—C10112.1 (3)
N1—C1—S1109.8 (3)C8—C9—H9A109.5
N1—C2—H2A109.5C8—C9—H9B109.5
N1—C2—H2B109.5H9A—C9—H9B109.5
H2A—C2—H2B109.5C8—C9—H9C109.5
N1—C2—H2C109.5H9A—C9—H9C109.5
H2A—C2—H2C109.5H9B—C9—H9C109.5
H2B—C2—H2C109.5C8—C10—H10A109.5
C4—C3—C13120.2 (3)C8—C10—H10B109.5
C4—C3—N1127.2 (3)H10A—C10—H10B109.5
C13—C3—N1112.6 (3)C8—C10—H10C109.5
C3—C4—C5120.2 (3)H10A—C10—H10C109.5
C3—C4—H4119.9H10B—C10—H10C109.5
C5—C4—H4119.9O2—C11—C12117.5 (3)
C11—C5—C4118.8 (3)O2—C11—C5120.8 (3)
C11—C5—C6117.9 (3)C12—C11—C5121.6 (3)
C4—C5—C6123.4 (3)C11—C12—C13118.4 (3)
C7—C6—C5120.3 (4)C11—C12—H12120.8
C7—C6—H6119.8C13—C12—H12120.8
C5—C6—H6119.8C12—C13—C3120.8 (3)
C6—C7—C8121.8 (3)C12—C13—S1128.0 (3)
C6—C7—H7119.1C3—C13—S1111.2 (3)
C3—N1—C1—O1179.1 (3)C6—C7—C8—O225.8 (5)
C2—N1—C1—O1−2.0 (5)C6—C7—C8—C9−94.5 (4)
C3—N1—C1—S1−0.2 (3)C6—C7—C8—C10140.6 (4)
C2—N1—C1—S1178.6 (2)C8—O2—C11—C12−155.9 (3)
C13—S1—C1—O1−179.8 (3)C8—O2—C11—C527.9 (4)
C13—S1—C1—N1−0.4 (2)C4—C5—C11—O2176.6 (3)
C1—N1—C3—C4−178.9 (3)C6—C5—C11—O2−2.2 (5)
C2—N1—C3—C42.2 (5)C4—C5—C11—C120.5 (5)
C1—N1—C3—C131.0 (4)C6—C5—C11—C12−178.2 (3)
C2—N1—C3—C13−177.9 (3)O2—C11—C12—C13−176.9 (3)
C13—C3—C4—C5−0.2 (5)C5—C11—C12—C13−0.8 (5)
N1—C3—C4—C5179.7 (3)C11—C12—C13—C30.5 (5)
C3—C4—C5—C11−0.1 (5)C11—C12—C13—S1−177.9 (3)
C3—C4—C5—C6178.6 (3)C4—C3—C13—C120.0 (5)
C11—C5—C6—C7−10.8 (5)N1—C3—C13—C12−180.0 (3)
C4—C5—C6—C7170.5 (3)C4—C3—C13—S1178.7 (2)
C5—C6—C7—C8−2.6 (5)N1—C3—C13—S1−1.3 (3)
C11—O2—C8—C7−37.9 (4)C1—S1—C13—C12179.5 (3)
C11—O2—C8—C982.5 (4)C1—S1—C13—C31.0 (2)
C11—O2—C8—C10−157.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.563.331 (5)140

Symmetry codes: (i) x, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2407).

References

  • Delhomel, J. F., Yous, S., Depreux, P. & Lesieur, D. (2001). J. Heterocycl. Chem.38, 633–639.
  • Enraf–Nonius (1984). CAD-4 Software Enraf-Nonius, Delft, The Netherlands.
  • Gunatilaka, L., Kingston, D., Wijeratne, K., Bandara, R., Hofmann, G. & Johnson, R. (1994). J. Nat. Prod.57, 518–520. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ucar, H., Van derpoorten, K., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). J. Med. Chem.41, 1138–1145. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography