PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o912.
Published online 2008 April 26. doi:  10.1107/S1600536808011124
PMCID: PMC2961215

1-(2-Hydr­oxy-5-methyl­phen­yl)ethanone [(1H-indol-3-­yl)acet­yl]hydrazone

Abstract

The indolyl –NH group of the title Schiff base, C19H19N3O2, forms a hydrogen bond to the –OH group of an inversion-related mol­ecule, resulting in a hydrogen-bonded dimer; adjacent dimers are further linked through an inter­dimer N—H(...)O hydrogen bond involving the –C(=O)–NH–N=fragment to form a linear ribbon that runs along the a axis.

Related literature

For a related compound that co-crystallizes with 3-indolylacetyl­hydrazine, see: Ali et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o912-scheme1.jpg

Experimental

Crystal data

  • C19H19N3O2
  • M r = 321.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o912-efi1.jpg
  • a = 4.6812 (9) Å
  • b = 12.419 (3) Å
  • c = 14.202 (3) Å
  • α = 109.919 (3)°
  • β = 91.710 (3)°
  • γ = 90.751 (3)°
  • V = 775.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 (2) K
  • 0.40 × 0.13 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: none
  • 4854 measured reflections
  • 3490 independent reflections
  • 1905 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.196
  • S = 1.01
  • 3490 reflections
  • 231 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011124/bt2687sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011124/bt2687Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Science Fund (12–02-03–2031) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

supplementary crystallographic information

Comment

The Schiff base that is derived by condensing 2,4-dihydroxyacetophenone with indole-3-acetylhydrazine crystallizes as a co-crystal with unchanged indole-3-acetylhydrazine (Ali et al., 2007). The reason for the formation of the co-crystal appears to be related to the ease of hydrogen bond formation as the parent ketone itself has two possible donor sites.

In the similar synthesis but with 2-hydroxy-5-methylacetophenone, only the pure Schiff base is obtained (Scheme I, Fig. 1). The indolyl –NH unit forms a hydrogen bond to the –OH unit of an inversion-related molecule to furnish a hydrogen-bonded dimer; adjacent dimers are further linked through an inter-dimer N–H···O hydrogen involving the –C(=O)–NH–N= fragment to form a linear ribbon chain that runs along the shortest axis of the triclinic unit cell (Fig. 2). The hydroxy group itself engages in intramolecular hydrogen bonding.

Experimental

Indole-3-acetylhydrazine (0.55 g, 4 mmol) and 2-hydroxy-5-methylacetophenone (0.52 g, 4 mmol) were dissolved in ethanol (100 ml). The reactants were heated under reflux for 1 h. The solvent was removed to give the tSchiff base, which was purified by recrystallization from ethanol.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H/O–H 0.85±0.01 Å; their displacement parameters were freely refined.

Figures

Fig. 1.
Thermal ellipsoid plot of C19H19N3O2; ellipsoids are drawn at the 70% probability level, and H atoms as spheres of arbitrary radii.
Fig. 2.
Hydrogen-bonded chain structure. Dashed lines denote H atoms.

Crystal data

C19H19N3O2Z = 2
Mr = 321.37F000 = 340
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 4.6812 (9) ÅCell parameters from 985 reflections
b = 12.419 (3) Åθ = 3.0–28.3º
c = 14.202 (3) ŵ = 0.09 mm1
α = 109.919 (3)ºT = 100 (2) K
β = 91.710 (3)ºPlate, pale yellow
γ = 90.751 (3)º0.40 × 0.13 × 0.05 mm
V = 775.7 (3) Å3

Data collection

Bruker SMART APEXII diffractometer1905 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Monochromator: graphiteθmax = 27.5º
T = 100(2) Kθmin = 1.5º
ω scansh = −6→3
Absorption correction: nonek = −15→16
4854 measured reflectionsl = −17→18
3490 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.196  w = 1/[σ2(Fo2) + (0.0894P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3490 reflectionsΔρmax = 0.43 e Å3
231 parametersΔρmin = −0.46 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.1765 (5)0.39859 (17)0.64793 (15)0.0232 (5)
H1O−0.097 (9)0.335 (2)0.617 (3)0.072 (15)*
O20.5909 (4)0.08863 (17)0.43759 (15)0.0259 (5)
N10.0800 (5)0.21073 (19)0.61339 (17)0.0198 (5)
N20.2703 (5)0.1345 (2)0.55630 (18)0.0205 (6)
H2N0.287 (9)0.0706 (17)0.565 (3)0.055 (12)*
N30.8788 (6)0.3894 (2)0.33999 (18)0.0224 (6)
H3N0.989 (6)0.4440 (19)0.339 (2)0.021 (8)*
C1−0.2982 (6)0.3739 (2)0.7244 (2)0.0201 (6)
C2−0.4852 (6)0.4525 (3)0.7818 (2)0.0241 (7)
H2−0.52150.52060.76760.029*
C3−0.6195 (6)0.4327 (3)0.8597 (2)0.0251 (7)
H3−0.74800.48740.89850.030*
C4−0.5699 (6)0.3340 (3)0.8822 (2)0.0243 (7)
C5−0.3819 (6)0.2562 (3)0.8235 (2)0.0226 (7)
H5−0.34870.18790.83770.027*
C6−0.2391 (6)0.2731 (2)0.7447 (2)0.0184 (6)
C7−0.7165 (7)0.3105 (3)0.9666 (2)0.0302 (8)
H7A−0.57270.29561.01190.045*
H7B−0.84520.24340.93900.045*
H7C−0.82690.37721.00370.045*
C8−0.0378 (6)0.1881 (2)0.6856 (2)0.0196 (6)
C90.0212 (7)0.0829 (2)0.7102 (2)0.0282 (7)
H9A0.22480.06590.70270.042*
H9B−0.09260.01830.66460.042*
H9C−0.02990.09520.77940.042*
C100.4156 (6)0.1572 (2)0.4841 (2)0.0199 (6)
C110.3479 (6)0.2641 (2)0.4612 (2)0.0216 (6)
H11A0.15360.25490.42960.026*
H11B0.34540.32940.52510.026*
C120.5528 (6)0.2925 (2)0.3940 (2)0.0201 (6)
C130.7169 (6)0.3905 (2)0.4185 (2)0.0216 (6)
H130.71810.45080.48130.026*
C140.6163 (6)0.2267 (2)0.2925 (2)0.0207 (6)
C150.5219 (7)0.1205 (3)0.2253 (2)0.0255 (7)
H150.38380.07590.24440.031*
C160.6313 (7)0.0813 (3)0.1311 (2)0.0306 (8)
H160.56770.00900.08510.037*
C170.8355 (7)0.1464 (3)0.1020 (2)0.0302 (8)
H170.90790.11740.03650.036*
C180.9324 (7)0.2513 (3)0.1664 (2)0.0274 (7)
H181.06980.29560.14670.033*
C190.8215 (6)0.2900 (3)0.2617 (2)0.0231 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0203 (11)0.0229 (11)0.0256 (11)0.0048 (9)0.0064 (9)0.0065 (9)
O20.0220 (12)0.0258 (11)0.0294 (11)0.0088 (9)0.0113 (9)0.0077 (9)
N10.0119 (12)0.0211 (12)0.0228 (12)0.0040 (10)0.0046 (10)0.0024 (10)
N20.0178 (13)0.0187 (12)0.0235 (12)0.0040 (11)0.0058 (10)0.0048 (11)
N30.0184 (14)0.0229 (13)0.0264 (13)0.0008 (11)0.0045 (11)0.0087 (11)
C10.0122 (14)0.0250 (15)0.0211 (14)0.0001 (12)−0.0006 (12)0.0056 (12)
C20.0172 (16)0.0236 (15)0.0281 (16)0.0032 (13)−0.0008 (13)0.0043 (13)
C30.0157 (15)0.0297 (16)0.0248 (16)0.0078 (13)0.0046 (13)0.0022 (13)
C40.0135 (15)0.0329 (17)0.0237 (15)0.0019 (13)0.0026 (12)0.0060 (13)
C50.0149 (15)0.0263 (15)0.0250 (15)0.0020 (12)0.0009 (12)0.0064 (13)
C60.0118 (14)0.0206 (14)0.0202 (14)0.0012 (12)−0.0005 (11)0.0036 (12)
C70.0214 (17)0.0393 (19)0.0274 (16)0.0050 (15)0.0085 (14)0.0076 (14)
C80.0136 (15)0.0210 (14)0.0213 (14)0.0005 (12)0.0014 (12)0.0032 (12)
C90.0292 (18)0.0226 (15)0.0329 (17)0.0065 (14)0.0135 (14)0.0085 (14)
C100.0151 (14)0.0196 (14)0.0215 (14)0.0026 (12)0.0002 (12)0.0023 (12)
C110.0171 (15)0.0228 (14)0.0244 (15)0.0069 (12)0.0046 (12)0.0068 (12)
C120.0127 (14)0.0238 (15)0.0248 (15)0.0078 (12)0.0039 (12)0.0091 (12)
C130.0173 (15)0.0225 (15)0.0252 (15)0.0074 (12)0.0045 (12)0.0079 (12)
C140.0122 (14)0.0263 (15)0.0247 (15)0.0061 (12)0.0023 (12)0.0098 (12)
C150.0224 (16)0.0256 (15)0.0267 (16)0.0013 (13)0.0012 (13)0.0065 (13)
C160.0322 (19)0.0290 (17)0.0283 (17)0.0021 (15)−0.0023 (15)0.0069 (14)
C170.0321 (19)0.0381 (18)0.0192 (15)0.0105 (15)0.0048 (14)0.0074 (14)
C180.0219 (17)0.0321 (17)0.0300 (16)0.0034 (14)0.0078 (14)0.0123 (14)
C190.0159 (15)0.0263 (15)0.0275 (16)0.0064 (12)0.0021 (13)0.0096 (13)

Geometric parameters (Å, °)

O1—C11.364 (3)C7—H7C0.9800
O1—H1O0.85 (3)C8—C91.491 (4)
O2—C101.226 (3)C9—H9A0.9800
N1—C81.288 (3)C9—H9B0.9800
N1—N21.375 (3)C9—H9C0.9800
N2—C101.352 (4)C10—C111.505 (4)
N2—H2N0.85 (3)C11—C121.494 (4)
N3—C131.363 (4)C11—H11A0.9900
N3—C191.367 (4)C11—H11B0.9900
N3—H3N0.85 (3)C12—C131.365 (4)
C1—C21.381 (4)C12—C141.436 (4)
C1—C61.406 (4)C13—H130.9500
C2—C31.379 (4)C14—C151.396 (4)
C2—H20.9500C14—C191.404 (4)
C3—C41.389 (4)C15—C161.376 (4)
C3—H30.9500C15—H150.9500
C4—C51.386 (4)C16—C171.404 (5)
C4—C71.508 (4)C16—H160.9500
C5—C61.394 (4)C17—C181.374 (4)
C5—H50.9500C17—H170.9500
C6—C81.475 (4)C18—C191.392 (4)
C7—H7A0.9800C18—H180.9500
C7—H7B0.9800
C1—O1—H1O101 (3)H9A—C9—H9B109.5
C8—N1—N2118.6 (2)C8—C9—H9C109.5
C10—N2—N1121.3 (2)H9A—C9—H9C109.5
C10—N2—H2N121 (3)H9B—C9—H9C109.5
N1—N2—H2N118 (3)O2—C10—N2119.0 (3)
C13—N3—C19109.0 (2)O2—C10—C11122.4 (3)
C13—N3—H3N125 (2)N2—C10—C11118.6 (2)
C19—N3—H3N126 (2)C12—C11—C10114.4 (2)
O1—C1—C2117.0 (3)C12—C11—H11A108.7
O1—C1—C6122.2 (2)C10—C11—H11A108.7
C2—C1—C6120.8 (3)C12—C11—H11B108.7
C3—C2—C1120.4 (3)C10—C11—H11B108.7
C3—C2—H2119.8H11A—C11—H11B107.6
C1—C2—H2119.8C13—C12—C14106.0 (3)
C2—C3—C4121.0 (3)C13—C12—C11125.4 (3)
C2—C3—H3119.5C14—C12—C11128.6 (3)
C4—C3—H3119.5N3—C13—C12110.4 (3)
C5—C4—C3117.7 (3)N3—C13—H13124.8
C5—C4—C7120.6 (3)C12—C13—H13124.8
C3—C4—C7121.8 (3)C15—C14—C19118.7 (3)
C4—C5—C6123.4 (3)C15—C14—C12134.3 (3)
C4—C5—H5118.3C19—C14—C12107.0 (3)
C6—C5—H5118.3C16—C15—C14119.2 (3)
C5—C6—C1116.8 (3)C16—C15—H15120.4
C5—C6—C8121.1 (3)C14—C15—H15120.4
C1—C6—C8122.1 (3)C15—C16—C17121.0 (3)
C4—C7—H7A109.5C15—C16—H16119.5
C4—C7—H7B109.5C17—C16—H16119.5
H7A—C7—H7B109.5C18—C17—C16121.2 (3)
C4—C7—H7C109.5C18—C17—H17119.4
H7A—C7—H7C109.5C16—C17—H17119.4
H7B—C7—H7C109.5C17—C18—C19117.5 (3)
N1—C8—C6116.3 (3)C17—C18—H18121.3
N1—C8—C9123.2 (3)C19—C18—H18121.3
C6—C8—C9120.5 (2)N3—C19—C18129.9 (3)
C8—C9—H9A109.5N3—C19—C14107.6 (2)
C8—C9—H9B109.5C18—C19—C14122.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (3)1.75 (2)2.540 (3)153 (4)
N2—H2n···O2i0.85 (3)2.05 (3)2.884 (3)166 (4)
N3—H3n···O1ii0.85 (3)2.08 (3)2.913 (3)166 (3)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2687).

References

  • Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729–o1730.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography