PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m668–m669.
Published online 2008 April 16. doi:  10.1107/S1600536808009860
PMCID: PMC2961201

Bis[1-(2-hydroxy­ethyl)-2-methyl-5-nitro-1H-imidazole-κN 3]silver(I) nitrate

Abstract

In the title compound, [Ag(C6H9N3O3)2]NO3, the Ag atom is bicoordinated in a distorted linear configuration by two 1-(2-hydroxy­ethyl)-2-methyl-5-nitro­imidazole ligands through one of the N atoms. The dihedral angle between the two imidazole rings is 16.1 (2)°. The O atoms of the nitrate anion are disordered over two positions; the site occupancy factors are 0.8 and 0.2. The ions are ­connected by C—H(...)O inter­actions, while two weak intra­molecular C—H(...)O inter­actions producing an S(6) ring motif are observed. The nitrate anion is linked to the hydroxyl groups of two neighbouring cations by O—H(...)O hydrogen bonds. The ions are packed into infinite chains along the [100] direction.

Related literature

For related literature regarding pharmaceutical uses of nitro­imidazole derivatives, see: Credito et al. (2000 [triangle]); Edwards (1981 [triangle]); Mendz & Megraud (2002 [triangle]). For comparable crystal structures, see: Blaton et al. (1979 [triangle]); Gao et al. (2004 [triangle]); Ni et al. (2003 [triangle]); Pi et al. (2005 [triangle]); Tong & Chen (2000 [triangle]); Yang et al. (2005 [triangle]); You & Zhu (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m668-scheme1.jpg

Experimental

Crystal data

  • [Ag(C6H9N3O3)2]NO3
  • M r = 512.2
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m668-efi1.jpg
  • a = 6.6912 (1) Å
  • b = 11.6846 (3) Å
  • c = 12.9052 (3) Å
  • α = 63.707 (1)°
  • β = 88.820 (1)°
  • γ = 87.486 (1)°
  • V = 903.72 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.18 mm−1
  • T = 100.0 (1) K
  • 0.74 × 0.22 × 0.1 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.476, T max = 0.892
  • 20384 measured reflections
  • 6509 independent reflections
  • 5958 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.059
  • S = 1.08
  • 6509 reflections
  • 291 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009860/ez2123sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009860/ez2123Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for awarding a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Nitroimidazole derivatives are of special interest due to their chemical and pharmacological properties. Nitroimidazoles are generally known as antiprotozoic and radiosensitizing drugs (Edwards, 1981). (1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole), known as metronidazole in pharmaceuticals, is a widely used antibacterial drug (Credito et al., 2000; Mendz & Megraud, 2002). The structure of the title compound (I) has been determined to examine the influence of the coordination of silver on the geometry of the heterocycle.

The structure consists of two 1-(2-hydroxyethyl)2-methyl-5-nitroimidazole ligands coordinating to the silver through the N atoms in a distorted linear configuration, indicated by the N3—Ag1—N1 angle of 165.34 (4) °. The bond lengths of Ag1—N3 = 2.147 (11) Å and Ag1—N1 = 2.148 (11) Å, are comparable to the values reported for similar silver coordinated complexes (Tong & Chen, 2000; Ni et al., 2003; You & Zhu, 2004; Gao et al., 2004). The bond lengths of the heterocyclic five membered rings are comparable with the values found in 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole in its un-coordinated form (Blaton et al., 1979), iodometronidazole (Yang et al., 2005), and chlorometronidazole (Pi et al., 2005).

Both the hydroxyl oxygen atoms, O1 and O4, attached to the imidazole rings are twisted from the mean plane, with O1–C9–C8–N2 and O4–C11–C10–N4 torsion angles being -66.96 (14)° and -71.9 (14)° respectively. The nitro groups attached to the imidazole rings are slightly twisted, with O3—N5—C5—C4 and O6—N6—C2—C3 torsion angles of -10.8 (2)° and -13.3 (2)° respectively. Both imidazole rings are essentially planar, with the maximum deviation from planarity being 0.007 (1) Å for atom C1 and 0.003 (2) Å for atom N2. The nitrate anion is disordered over two positions with site occupancies of 0.8:0.2. The molecules in the asymmetric unit are interconnected by C—H···O hydrogen bonds. Intramolecular C—H···O hydrogen bonding results in an S(6) a ring motif, while two oxygen atoms of the major component of the disordered nitrate anion form C—H···O interations with the cation, forming an R22(10) motif (Fig. 1). The nitrate ions are linked to the hydroxyl groups on neighbouring cations by O—H···O hydrogen bonds. The molecules are packed into infinite one dimensional chains along the [1 0 0] direction.

Experimental

1-(2-hydroxyethyl)2-methyl-5-nitroimidazole) (0.350 g) [ALDRICH] was dissolved in 25 ml hot ethanol and silver nitrate [Sigma] (0.150 g) was dissolved in 20 ml ammonia solution in the molar ratio 2:1. These two solutions were mixed and heated under reflux for 48 h at a temperature of 363 K. Colourless plate shaped crystals were obtained after a month upon slow evaporation of the solvent.

Refinement

After confirming their presence in the difference map, all H atoms were placed in calculated positions [C—H = 0.93 Å, CH3 = 0.96 Å CH2= 0.97Å and O—H = 0.86Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C,O) and Uiso(H) = -1.5Ueq(methyl)]. The ratio of the occupancies for the major and minor components of the disordered nitro group O atoms were refined to 0.786 (3):0.214 (3). In the final refinement, this ratio was fixed at 0.8:0.2.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal packing of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Ag(C6H9N3O3)2]NO3Z = 2
Mr = 512.2F000 = 516
Triclinic, P1Dx = 1.882 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.6912 (1) ÅCell parameters from 9959 reflections
b = 11.6846 (3) Åθ = 3.2–37.8º
c = 12.9052 (3) ŵ = 1.18 mm1
α = 63.707 (1)ºT = 100.0 (1) K
β = 88.820 (1)ºPlate, colourless
γ = 87.486 (1)º0.74 × 0.22 × 0.1 mm
V = 903.72 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometerRint = 0.026
[var phi] and ω scansθmax = 32.5º
Absorption correction: multi-scan(SADABS; Bruker, 2005)θmin = 2.0º
Tmin = 0.476, Tmax = 0.892h = −10→10
20384 measured reflectionsk = −17→17
6509 independent reflectionsl = −19→19
5958 reflections with I > 2σ(I)

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0281P)2 + 0.2414P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max = 0.005
wR(F2) = 0.059Δρmax = 0.58 e Å3
S = 1.08Δρmin = −0.65 e Å3
6509 reflectionsExtinction correction: none
291 parameters

Special details

Geometry. Experimental. The low-temperature data was collected with the Oxford Crysosystem Cobra low-temperature attachement.All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ag10.247504 (15)0.147593 (9)1.004773 (8)0.01643 (3)
O10.93316 (17)0.44665 (10)0.82229 (9)0.0223 (2)
H1010.90520.37850.85940.027*
O20.70475 (17)0.41493 (11)0.50145 (9)0.0243 (2)
O30.62322 (18)0.21652 (11)0.56769 (10)0.0250 (2)
O4−0.46849 (17)0.21717 (10)1.24656 (9)0.0214 (2)
H1O4−0.42880.20021.20030.026*
O5−0.18196 (16)−0.16629 (10)1.51008 (8)0.0191 (2)
O6−0.10089 (17)−0.26774 (9)1.40801 (9)0.0211 (2)
N10.39023 (17)0.26342 (10)0.84333 (9)0.01355 (19)
N20.56794 (17)0.41644 (10)0.71061 (9)0.01301 (19)
N30.10790 (17)0.07543 (11)1.17193 (9)0.0136 (2)
N4−0.07227 (16)0.06598 (10)1.32188 (9)0.01194 (19)
N50.63543 (18)0.31651 (12)0.57702 (10)0.0168 (2)
N6−0.11678 (17)−0.16962 (11)1.42100 (9)0.0139 (2)
C10.02601 (19)0.14301 (12)1.22443 (11)0.0127 (2)
C2−0.0527 (2)−0.05563 (12)1.32798 (11)0.0124 (2)
C30.0586 (2)−0.04857 (12)1.23573 (11)0.0137 (2)
H3A0.0947−0.11651.21920.016*
C40.4512 (2)0.22327 (12)0.76340 (11)0.0140 (2)
H4A0.42260.14550.76450.017*
C50.5613 (2)0.31599 (12)0.68117 (11)0.0135 (2)
C60.46316 (19)0.38035 (12)0.80999 (11)0.0133 (2)
C70.4302 (2)0.45784 (13)0.87398 (13)0.0190 (3)
H7A0.31410.42960.92230.028*
H7B0.41030.54610.82010.028*
H7C0.54490.44810.92110.028*
C80.6977 (2)0.52691 (12)0.66141 (12)0.0170 (2)
H8A0.64910.59130.6850.02*
H8B0.69310.56420.57770.02*
C90.9125 (2)0.48636 (14)0.70209 (13)0.0188 (3)
H9A0.95640.41680.68440.023*
H9B0.99820.55740.66030.023*
C10−0.2072 (2)0.10938 (13)1.39020 (11)0.0147 (2)
H10A−0.17020.19341.3790.018*
H10B−0.19190.05131.47160.018*
C11−0.4241 (2)0.11526 (13)1.35576 (12)0.0165 (2)
H11A−0.45410.03541.35450.02*
H11B−0.50930.12451.41350.02*
C120.0442 (2)0.28233 (13)1.18237 (13)0.0182 (3)
H12A0.09930.31831.10570.027*
H12B0.13060.29771.2330.027*
H12C−0.08560.32131.18120.027*
N70.25847 (17)−0.14402 (10)0.98555 (9)0.0148 (2)
O7A0.2995 (2)−0.22646 (13)0.95060 (13)0.0197 (3)0.8
O8A0.1492 (2)−0.17829 (13)1.07672 (11)0.0195 (2)0.8
O9A0.3251 (2)−0.03721 (13)0.93965 (13)0.0255 (3)0.8
O7B0.1786 (8)−0.0844 (5)1.0334 (4)0.0190 (10)0.2
O8B0.3686 (7)−0.0715 (5)0.8893 (4)0.0154 (9)0.2
O9B0.2298 (9)−0.2500 (5)0.9990 (5)0.0163 (9)0.2

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.01378 (5)0.01905 (5)0.01297 (5)−0.00266 (4)0.00451 (3)−0.00392 (4)
O10.0242 (5)0.0180 (5)0.0232 (5)−0.0036 (4)−0.0036 (4)−0.0073 (4)
O20.0234 (5)0.0286 (6)0.0147 (4)−0.0036 (4)0.0057 (4)−0.0041 (4)
O30.0304 (6)0.0284 (6)0.0222 (5)−0.0004 (5)0.0003 (4)−0.0168 (4)
O40.0219 (5)0.0204 (5)0.0198 (5)0.0055 (4)−0.0027 (4)−0.0075 (4)
O50.0193 (5)0.0222 (5)0.0135 (4)−0.0019 (4)0.0060 (4)−0.0060 (4)
O60.0281 (6)0.0133 (4)0.0208 (5)−0.0021 (4)0.0040 (4)−0.0065 (4)
N10.0130 (5)0.0130 (5)0.0132 (5)−0.0023 (4)0.0022 (4)−0.0044 (4)
N20.0127 (5)0.0115 (4)0.0127 (4)−0.0016 (4)0.0002 (4)−0.0033 (4)
N30.0131 (5)0.0140 (5)0.0124 (4)−0.0002 (4)0.0023 (4)−0.0049 (4)
N40.0111 (5)0.0135 (5)0.0121 (4)−0.0002 (4)0.0009 (4)−0.0065 (4)
N50.0141 (5)0.0230 (6)0.0128 (5)0.0005 (4)−0.0001 (4)−0.0074 (4)
N60.0119 (5)0.0149 (5)0.0133 (5)−0.0005 (4)0.0008 (4)−0.0048 (4)
C10.0107 (5)0.0141 (5)0.0134 (5)−0.0006 (4)0.0004 (4)−0.0061 (4)
C20.0136 (5)0.0114 (5)0.0115 (5)−0.0006 (4)0.0013 (4)−0.0044 (4)
C30.0148 (6)0.0125 (5)0.0126 (5)0.0015 (4)0.0013 (4)−0.0046 (4)
C40.0146 (6)0.0137 (5)0.0137 (5)−0.0022 (4)0.0006 (4)−0.0059 (4)
C50.0136 (5)0.0151 (5)0.0115 (5)−0.0016 (4)0.0008 (4)−0.0056 (4)
C60.0119 (5)0.0122 (5)0.0142 (5)−0.0002 (4)0.0003 (4)−0.0044 (4)
C70.0205 (6)0.0159 (6)0.0227 (6)−0.0001 (5)0.0030 (5)−0.0106 (5)
C80.0173 (6)0.0124 (5)0.0172 (6)−0.0055 (5)0.0023 (5)−0.0026 (4)
C90.0152 (6)0.0185 (6)0.0232 (6)−0.0056 (5)0.0028 (5)−0.0094 (5)
C100.0154 (6)0.0175 (6)0.0135 (5)0.0011 (5)0.0022 (5)−0.0091 (5)
C110.0138 (6)0.0183 (6)0.0167 (6)0.0007 (5)0.0030 (5)−0.0072 (5)
C120.0188 (6)0.0136 (5)0.0221 (6)−0.0023 (5)0.0027 (5)−0.0078 (5)
N70.0136 (5)0.0157 (5)0.0162 (5)0.0004 (4)−0.0016 (4)−0.0082 (4)
O7A0.0249 (7)0.0191 (6)0.0181 (6)0.0024 (5)−0.0005 (6)−0.0111 (5)
O8A0.0195 (6)0.0248 (7)0.0148 (5)−0.0011 (5)0.0033 (5)−0.0095 (5)
O9A0.0274 (7)0.0148 (6)0.0300 (7)−0.0050 (5)0.0031 (6)−0.0059 (5)
O7B0.018 (2)0.026 (3)0.020 (2)0.003 (2)0.0041 (19)−0.017 (2)
O8B0.013 (2)0.016 (2)0.013 (2)−0.0043 (17)0.0042 (17)−0.0027 (17)
O9B0.023 (3)0.010 (2)0.012 (2)−0.0014 (19)0.001 (2)−0.0019 (17)

Geometric parameters (Å, °)

Ag1—N32.1475 (11)C4—C51.3646 (17)
Ag1—N12.1489 (11)C4—H4A0.93
O1—C91.4165 (18)C6—C71.4791 (18)
O1—H1010.7548C7—H7A0.96
O2—N51.2342 (15)C7—H7B0.96
O3—N51.2327 (16)C7—H7C0.96
O4—C111.4112 (17)C8—C91.522 (2)
O4—H1O40.7478C8—H8A0.97
O5—N61.2372 (14)C8—H8B0.97
O6—N61.2299 (15)C9—H9A0.97
N1—C61.3487 (16)C9—H9B0.97
N1—C41.3583 (17)C10—C111.5160 (19)
N2—C61.3505 (16)C10—H10A0.97
N2—C51.3871 (16)C10—H10B0.97
N2—C81.4738 (16)C11—H11A0.97
N3—C11.3430 (16)C11—H11B0.97
N3—C31.3638 (16)C12—H12A0.96
N4—C11.3561 (16)C12—H12B0.96
N4—C21.3884 (16)C12—H12C0.96
N4—C101.4742 (16)N7—O9B1.195 (5)
N5—C51.4206 (17)N7—O7B1.219 (5)
N6—C21.4182 (16)N7—O9A1.2207 (17)
C1—C121.4803 (18)N7—O7A1.2503 (17)
C2—C31.3643 (17)N7—O8A1.2854 (16)
C3—H3A0.93N7—O8B1.374 (5)
N3—Ag1—N1165.34 (4)N2—C8—C9110.63 (11)
C9—O1—H101114.1N2—C8—H8A109.5
C11—O4—H1O4109.2C9—C8—H8A109.5
C6—N1—C4106.90 (10)N2—C8—H8B109.5
C6—N1—Ag1127.13 (9)C9—C8—H8B109.5
C4—N1—Ag1125.25 (9)H8A—C8—H8B108.1
C6—N2—C5105.98 (10)O1—C9—C8112.19 (11)
C6—N2—C8124.90 (11)O1—C9—H9A109.2
C5—N2—C8127.79 (11)C8—C9—H9A109.2
C1—N3—C3107.24 (10)O1—C9—H9B109.2
C1—N3—Ag1127.60 (9)C8—C9—H9B109.2
C3—N3—Ag1124.41 (9)H9A—C9—H9B107.9
C1—N4—C2105.63 (10)N4—C10—C11111.72 (11)
C1—N4—C10125.57 (11)N4—C10—H10A109.3
C2—N4—C10127.52 (10)C11—C10—H10A109.3
O3—N5—O2123.88 (12)N4—C10—H10B109.3
O3—N5—C5116.63 (11)C11—C10—H10B109.3
O2—N5—C5119.48 (12)H10A—C10—H10B107.9
O6—N6—O5123.70 (11)O4—C11—C10112.83 (11)
O6—N6—C2116.89 (11)O4—C11—H11A109
O5—N6—C2119.40 (11)C10—C11—H11A109
N3—C1—N4110.81 (11)O4—C11—H11B109
N3—C1—C12124.38 (11)C10—C11—H11B109
N4—C1—C12124.80 (11)H11A—C11—H11B107.8
C3—C2—N4108.17 (11)C1—C12—H12A109.5
C3—C2—N6125.67 (12)C1—C12—H12B109.5
N4—C2—N6125.76 (11)H12A—C12—H12B109.5
N3—C3—C2108.13 (11)C1—C12—H12C109.5
N3—C3—H3A125.9H12A—C12—H12C109.5
C2—C3—H3A125.9H12B—C12—H12C109.5
N1—C4—C5108.62 (11)O9B—N7—O7B129.1 (4)
N1—C4—H4A125.7O9B—N7—O9A157.0 (3)
C5—C4—H4A125.7O7B—N7—O9A73.6 (3)
C4—C5—N2107.74 (11)O9B—N7—O7A34.6 (3)
C4—C5—N5126.13 (12)O7B—N7—O7A163.2 (3)
N2—C5—N5125.74 (11)O9A—N7—O7A122.53 (14)
N1—C6—N2110.75 (11)O9B—N7—O8A82.5 (3)
N1—C6—C7124.08 (12)O7B—N7—O8A47.6 (3)
N2—C6—C7125.16 (11)O9A—N7—O8A120.45 (13)
C6—C7—H7A109.5O7A—N7—O8A116.95 (13)
C6—C7—H7B109.5O9B—N7—O8B115.2 (4)
H7A—C7—H7B109.5O7B—N7—O8B114.5 (4)
C6—C7—H7C109.5O9A—N7—O8B41.9 (2)
H7A—C7—H7C109.5O7A—N7—O8B80.9 (2)
H7B—C7—H7C109.5O8A—N7—O8B162.1 (2)
N3—Ag1—N1—C68.8 (2)Ag1—N1—C4—C5−170.95 (9)
N3—Ag1—N1—C4177.85 (15)N1—C4—C5—N2−0.29 (16)
N1—Ag1—N3—C117.4 (2)N1—C4—C5—N5−173.38 (13)
N1—Ag1—N3—C3−173.76 (15)C6—N2—C5—C40.52 (15)
C3—N3—C1—N41.10 (15)C8—N2—C5—C4167.74 (12)
Ag1—N3—C1—N4171.44 (9)C6—N2—C5—N5173.64 (13)
C3—N3—C1—C12−179.92 (13)C8—N2—C5—N5−19.1 (2)
Ag1—N3—C1—C12−9.6 (2)O3—N5—C5—C4−10.8 (2)
C2—N4—C1—N3−1.28 (15)O2—N5—C5—C4168.30 (14)
C10—N4—C1—N3−169.09 (12)O3—N5—C5—N2177.36 (13)
C2—N4—C1—C12179.75 (13)O2—N5—C5—N2−3.6 (2)
C10—N4—C1—C1211.9 (2)C4—N1—C6—N20.39 (15)
C1—N4—C2—C30.96 (15)Ag1—N1—C6—N2171.07 (9)
C10—N4—C2—C3168.46 (12)C4—N1—C6—C7179.94 (13)
C1—N4—C2—N6174.09 (13)Ag1—N1—C6—C7−9.39 (19)
C10—N4—C2—N6−18.4 (2)C5—N2—C6—N1−0.57 (15)
O6—N6—C2—C3−13.3 (2)C8—N2—C6—N1−168.26 (12)
O5—N6—C2—C3165.71 (13)C5—N2—C6—C7179.89 (13)
O6—N6—C2—N4174.73 (13)C8—N2—C6—C712.2 (2)
O5—N6—C2—N4−6.2 (2)C6—N2—C8—C992.52 (15)
C1—N3—C3—C2−0.46 (16)C5—N2—C8—C9−72.45 (17)
Ag1—N3—C3—C2−171.18 (9)N2—C8—C9—O1−66.96 (14)
N4—C2—C3—N3−0.32 (16)C1—N4—C10—C1194.80 (15)
N6—C2—C3—N3−173.46 (12)C2—N4—C10—C11−70.35 (17)
C6—N1—C4—C5−0.05 (15)N4—C10—C11—O4−71.90 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H101···O9Bi0.752.012.685 (5)150
O1—H101···O8Ai0.752.152.8872 (17)164
O4—H1O4···O7Aii0.752.022.7225 (18)158
O4—H1O4···O8Bii0.752.292.985 (5)156
C3—H3A···O8A0.932.273.0820145
C4—H4A···O9A0.932.423.0269122
C8—H8B···O20.972.352.891 (2)115
C10—H10B···O50.972.362.888 (2)113

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2123).

References

  • Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2465–2467.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Credito, K. L., Jacobs, M. R. & Applebaum, P. C. (2000). Diagn. Microbiol. Infect. Dis.38, 181–183. [PubMed]
  • Edwards, D. I. (1981). Prog. Med. Chem.18, 88–116. [PubMed]
  • Gao, S., Lu, Z.-Z., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. C60, m651–m653. [PubMed]
  • Mendz, G. L. & Megraud, F. (2002). Trends Microbiol.10, 370–375. [PubMed]
  • Ni, J., Li, Y.-Z., Xue, Z., Chen, H.-L. & Wang, Z.-L. (2003). Acta Cryst. C59, m201–m203. [PubMed]
  • Pi, W.-X., Yang, Y.-M., Li, H.-Q. & Zhu, H.-L. (2005). Acta Cryst. E61, o2880–o2881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tong, M.-L. & Chen, X.-M. (2000). Acta Cryst. C56, 1075–1076. [PubMed]
  • Yang, Y.-M., Li, H.-Q., Shi, L. & Zhu, H.-L. (2005). Acta Cryst. E61, o2882–o2883.
  • You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. C60, m515–m516. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography