PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m728.
Published online 2008 April 26. doi:  10.1107/S1600536808011045
PMCID: PMC2961197

Poly[(μ3-nicotinato-κ3 O:O′:N)(μ2-nicotinato-κ3 O,O′:N)iron(II)]

Abstract

In the crystal structure of the title compound, [Fe(C6H4NO2)2]n, one nicotinate group O,O′-chelates one Fe atom and binds through the N atom to the other Fe atom; the second nicotinate group bridges three Fe atoms through the N and two O atoms. The μ2- and μ3-bridging modes of the two nicotinate groups result in a polymeric three-dimensional network structure. The Fe atom shows octa­hedral coordination geometry but one of the Fe—O bonds is somewhat long [2.522 (2) Å].

Related literature

For zwitterionic tetra­aquadi(nicotinato-κN)iron(II), see: Liang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m728-scheme1.jpg

Experimental

Crystal data

  • [Fe(C6H4NO2)2]
  • M r = 300.05
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m728-efi1.jpg
  • a = 10.8771 (7) Å
  • b = 9.6066 (6) Å
  • c = 12.7284 (8) Å
  • β = 111.619 (1)°
  • V = 1236.5 (1) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.23 mm−1
  • T = 295 (2) K
  • 0.41 × 0.34 × 0.25 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.564, T max = 0.749
  • 7255 measured reflections
  • 2762 independent reflections
  • 2428 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.078
  • S = 1.02
  • 2762 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]) and OLEX (Dolomanov et al., 2003 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011045/xu2410sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011045/xu2410Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

I thank Mr Yan-Zhen Zheng of Sun Yat-Sen University for synthesizing the compound and measuring the crystal and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The crystal structures of a large number of divalent metal dinicotinates are known; the compounds exists as water-coordinated compounds in which the nicotinate ion binds through the aromatic N atom and not through the carboxyl group, as exemplified by tetraaquadinicotinatoiron(II). The report on this compound lists the crystal structures of tetraaquametal dinicotinates (Liang et al., 2005). Tetraaquadinicotinatoiron is synthesized by reaction of the metal salt with nicotinic acid under aqueous conditions; under hydrothermal conditions, the synthesis has yielded the anhydrous compound (I). Iron dinicotinate (Fig. 1) has the nicotinate group engaged into two types of bridging interactions; one group O,O'-chelate to one Fe atom and binds through the N atom to the other Fe atom; the second nicotinate group bridges three Fe atoms through the N and two O atoms. The µ2 and µ3 bridging modes of the two nicotinate groups result in a polymeric three-dimensional network structure (Fig. 2). The Fe atom shows the common octahedral coordination geometry but one of the Fe–O bonds is somewhat long (Table 1).

Experimental

Iron powder (0.056 g, 1 mmol), nicotinic acid (0.218 g 2 mmol) and water (10 ml) heated in a 23-ml, Teflon-lined, Parr bomb at 423 K for 3 days. The bomb was cooled to room temperature at a rate of 10 K per min to give yellow block-shaped crystals (in 10% yield based on nicotinic acid rate of 10 oC.h-1. The yellow block crystals of iron dinicoinate were obtained (yield 8.2% based on nicotinic acid).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figures

Fig. 1.
50% Probability thermal ellipsoid plot illustrating the octahedral geometry at iron.
Fig. 2.
OLEX (Dolomanov et al., 2003) illustration of the three-dimensional network motif.

Crystal data

[Fe(C6H4NO2)2]F000 = 608
Mr = 300.05Dx = 1.612 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6064 reflections
a = 10.8771 (7) Åθ = 2.1–27.5º
b = 9.6066 (6) ŵ = 1.23 mm1
c = 12.7284 (8) ÅT = 295 (2) K
β = 111.619 (1)ºBlock, yellow
V = 1236.5 (1) Å30.41 × 0.34 × 0.25 mm
Z = 4

Data collection

Bruker APEX diffractometer2762 independent reflections
Radiation source: fine-focus sealed tube2428 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.018
T = 295(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.564, Tmax = 0.749k = −10→12
7255 measured reflectionsl = −13→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.078  w = 1/[σ2(Fo2) + (0.0475P)2 + 0.2265P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2762 reflectionsΔρmax = 0.24 e Å3
172 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.40603 (2)0.37707 (2)0.580119 (18)0.02707 (10)
O10.28044 (15)0.19952 (16)0.64714 (12)0.0540 (4)
O20.43525 (13)0.34442 (14)0.74858 (11)0.0398 (3)
O30.32118 (11)0.33429 (14)0.41409 (10)0.0345 (3)
O40.45693 (13)0.46511 (14)0.36328 (12)0.0477 (3)
N10.25364 (13)0.02956 (15)0.94060 (12)0.0335 (3)
N20.06748 (13)0.27149 (15)0.09200 (12)0.0335 (3)
C10.35420 (18)0.24585 (18)0.73955 (15)0.0371 (4)
C20.35386 (17)0.18565 (18)0.84835 (14)0.0336 (4)
C30.25803 (17)0.09027 (18)0.84724 (15)0.0344 (4)
H30.19320.06710.77800.041*
C40.34759 (18)0.0657 (2)1.03903 (15)0.0396 (4)
H40.34620.02461.10470.048*
C50.4460 (2)0.1601 (2)1.04838 (16)0.0450 (5)
H50.50900.18241.11870.054*
C60.44980 (18)0.2211 (2)0.95150 (16)0.0415 (4)
H60.51560.28490.95540.050*
C70.35595 (15)0.39427 (16)0.34127 (14)0.0283 (3)
C80.26579 (15)0.37708 (15)0.22048 (14)0.0281 (3)
C90.15745 (16)0.29047 (17)0.19585 (13)0.0314 (3)
H90.14640.24240.25520.038*
C100.08654 (19)0.3417 (2)0.00799 (15)0.0400 (4)
H100.02510.3306−0.06510.048*
C110.19213 (19)0.4291 (2)0.02432 (15)0.0432 (4)
H110.20130.4753−0.03660.052*
C120.28458 (18)0.44749 (18)0.13239 (15)0.0368 (4)
H120.35720.50540.14560.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.02436 (14)0.03310 (15)0.01968 (14)−0.00138 (8)0.00333 (10)−0.00096 (8)
O10.0695 (10)0.0593 (9)0.0300 (7)−0.0046 (8)0.0145 (7)0.0019 (6)
O20.0405 (7)0.0448 (7)0.0379 (7)0.0017 (6)0.0188 (6)0.0113 (5)
O30.0304 (6)0.0479 (7)0.0207 (6)−0.0014 (5)0.0042 (5)−0.0011 (5)
O40.0393 (7)0.0507 (8)0.0417 (8)−0.0193 (6)0.0014 (6)−0.0023 (6)
N10.0301 (7)0.0397 (8)0.0282 (7)−0.0009 (6)0.0080 (6)0.0040 (6)
N20.0311 (7)0.0408 (8)0.0225 (7)−0.0059 (6)0.0027 (6)0.0003 (6)
C10.0419 (9)0.0396 (9)0.0332 (9)0.0092 (8)0.0176 (8)0.0055 (7)
C20.0358 (9)0.0359 (9)0.0311 (9)0.0018 (7)0.0146 (7)0.0027 (7)
C30.0331 (8)0.0396 (9)0.0267 (8)0.0007 (7)0.0065 (7)0.0021 (7)
C40.0389 (9)0.0504 (11)0.0267 (9)−0.0055 (8)0.0089 (7)0.0053 (8)
C50.0426 (10)0.0566 (12)0.0285 (9)−0.0122 (9)0.0045 (8)0.0005 (8)
C60.0403 (9)0.0462 (10)0.0368 (10)−0.0110 (8)0.0127 (8)0.0018 (8)
C70.0255 (8)0.0286 (8)0.0262 (8)0.0026 (6)0.0044 (6)−0.0032 (6)
C80.0270 (8)0.0311 (8)0.0240 (8)−0.0006 (6)0.0066 (6)−0.0023 (6)
C90.0305 (8)0.0383 (9)0.0224 (8)−0.0044 (7)0.0061 (6)0.0015 (6)
C100.0433 (10)0.0458 (10)0.0222 (8)−0.0046 (8)0.0017 (7)0.0014 (7)
C110.0519 (11)0.0481 (10)0.0274 (9)−0.0099 (9)0.0121 (8)0.0059 (8)
C120.0378 (9)0.0398 (9)0.0313 (9)−0.0093 (7)0.0109 (7)0.0003 (7)

Geometric parameters (Å, °)

Fe1—O12.522 (2)C2—C31.384 (2)
Fe1—O22.072 (1)C2—C61.385 (3)
Fe1—O32.012 (1)C3—H30.9300
Fe1—O4i2.061 (1)C4—C51.375 (3)
Fe1—N1ii2.212 (1)C4—H40.9300
Fe1—N2iii2.224 (1)C5—C61.379 (3)
O1—C11.237 (2)C5—H50.9300
O2—C11.270 (2)C6—H60.9300
O3—C71.262 (2)C7—C81.497 (2)
O4—C71.233 (2)C8—C91.381 (2)
O4—Fe1i2.0611 (12)C8—C121.388 (2)
N1—C41.338 (2)C9—H90.9300
N1—C31.340 (2)C10—C111.375 (3)
N1—Fe1iv2.2124 (14)C10—H100.9300
N2—C91.336 (2)C11—C121.384 (2)
N2—C101.343 (2)C11—H110.9300
N2—Fe1v2.2243 (14)C12—H120.9300
C1—C21.502 (2)
O1—Fe1—O256.18 (5)N1—C3—C2123.49 (16)
O1—Fe1—O396.95 (5)N1—C3—H3118.3
O1—Fe1—O4i142.30 (5)C2—C3—H3118.3
O1—Fe1—N1ii89.36 (5)N1—C4—C5123.64 (17)
O1—Fe1—N2iii93.18 (5)N1—C4—H4118.2
O2—Fe1—O3153.10 (6)C5—C4—H4118.2
O2—Fe1—O4i86.23 (5)C4—C5—C6118.78 (18)
O2—Fe1—N1ii92.17 (5)C4—C5—H5120.6
O2—Fe1—N2iii90.93 (5)C6—C5—H5120.6
O3—Fe1—O4i120.67 (6)C5—C6—C2118.87 (17)
O3—Fe1—N1ii88.50 (5)C5—C6—H6120.6
O3—Fe1—N2iii89.17 (5)C2—C6—H6120.6
O4i—Fe1—N1ii89.39 (6)O4—C7—O3124.60 (16)
O4i—Fe1—N2iii89.83 (6)O4—C7—C8119.06 (15)
N1ii—Fe1—N2iii176.74 (5)O3—C7—C8116.33 (14)
C1—O1—Fe180.56 (11)C9—C8—C12118.53 (15)
C1—O2—Fe1100.52 (11)C9—C8—C7118.75 (15)
C7—O3—Fe1122.17 (11)C12—C8—C7122.70 (15)
C7—O4—Fe1i162.57 (13)N2—C9—C8124.03 (15)
C4—N1—C3116.93 (15)N2—C9—H9118.0
C4—N1—Fe1iv125.34 (12)C8—C9—H9118.0
C3—N1—Fe1iv117.73 (11)N2—C10—C11123.46 (16)
C9—N2—C10116.58 (14)N2—C10—H10118.3
C9—N2—Fe1v115.27 (11)C11—C10—H10118.3
C10—N2—Fe1v128.13 (12)C10—C11—C12119.27 (17)
O1—C1—O2122.67 (17)C10—C11—H11120.4
O1—C1—C2121.14 (17)C12—C11—H11120.4
O2—C1—C2116.18 (16)C11—C12—C8118.12 (16)
C3—C2—C6118.28 (16)C11—C12—H12120.9
C3—C2—C1120.21 (16)C8—C12—H12120.9
C6—C2—C1121.49 (16)
O3—Fe1—O1—C1177.00 (11)C1—C2—C3—N1178.18 (15)
O4i—Fe1—O1—C1−6.40 (16)C3—N1—C4—C50.0 (3)
O2—Fe1—O1—C1−1.54 (10)Fe1iv—N1—C4—C5179.39 (16)
N1ii—Fe1—O1—C1−94.59 (11)N1—C4—C5—C6−0.4 (3)
N2iii—Fe1—O1—C187.45 (11)C4—C5—C6—C20.4 (3)
O3—Fe1—O2—C1−1.69 (18)C3—C2—C6—C50.1 (3)
O4i—Fe1—O2—C1178.53 (11)C1—C2—C6—C5−178.59 (17)
N1ii—Fe1—O2—C189.28 (11)Fe1i—O4—C7—O3−68.9 (5)
N2iii—Fe1—O2—C1−91.70 (11)Fe1i—O4—C7—C8110.7 (4)
O1—Fe1—O2—C11.51 (10)Fe1—O3—C7—O412.9 (2)
O4i—Fe1—O3—C75.56 (14)Fe1—O3—C7—C8−166.66 (10)
O2—Fe1—O3—C7−174.18 (11)O4—C7—C8—C9175.90 (15)
N1ii—Fe1—O3—C793.97 (13)O3—C7—C8—C9−4.5 (2)
N2iii—Fe1—O3—C7−83.75 (13)O4—C7—C8—C12−5.9 (2)
O1—Fe1—O3—C7−176.85 (12)O3—C7—C8—C12173.73 (15)
Fe1—O1—C1—O22.49 (16)C10—N2—C9—C80.4 (3)
Fe1—O1—C1—C2−176.46 (16)Fe1v—N2—C9—C8179.22 (13)
Fe1—O2—C1—O1−3.0 (2)C12—C8—C9—N2−1.1 (3)
Fe1—O2—C1—C2175.95 (12)C7—C8—C9—N2177.20 (15)
O1—C1—C2—C3−9.1 (3)C9—N2—C10—C110.3 (3)
O2—C1—C2—C3171.91 (16)Fe1v—N2—C10—C11−178.38 (15)
O1—C1—C2—C6169.55 (18)N2—C10—C11—C12−0.2 (3)
O2—C1—C2—C6−9.5 (2)C10—C11—C12—C8−0.5 (3)
C4—N1—C3—C20.4 (3)C9—C8—C12—C111.1 (3)
Fe1iv—N1—C3—C2−178.97 (13)C7—C8—C12—C11−177.12 (16)
C6—C2—C3—N1−0.5 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+3/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+1/2, y−1/2, −z+3/2; (v) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2410).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2004). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst.36, 1283–1284.
  • Liang, Y., Li, W. & Guo, B.-J. (2005). Acta Cryst. E61, m1782–m1784.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography