PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o922.
Published online 2008 April 26. doi:  10.1107/S1600536808011069
PMCID: PMC2961192

N,N′-Bis(4-chloro­phen­yl)urea

Abstract

The carbonyl unit of the title compound, C13H10Cl2N2O, lies on a twofold rotation axis. The ring is aligned at 51.6 (1)° with respect to the N—C(=O)—N fragment. The two –NH– fragments of one mol­ecule form hydrogen bonds [2.845 (2) Å] to the C=O fragment of an adjacent mol­ecule, giving rise to the formation of a linear hydrogen-bonded chain.

Related literature

For isostructural N,N′-bis­(4-bromo­phen­yl)urea, see: Lin et al. (2004 [triangle]). N,N′-Bis-(4-chloro­phen­yl)urea has been isolated as a co-crystal with a phthalazinium chloride; see: Wamhoff et al. (1994 [triangle]). For the self-condensation of 4-chloro­phenyl isocyanate to yield the title symmetrical urea, see: Fu et al. (2007 [triangle]); Jimenez Blanco et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o922-scheme1.jpg

Experimental

Crystal data

  • C13H10Cl2N2O
  • M r = 281.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o922-efi1.jpg
  • a = 27.093 (3) Å
  • b = 4.5768 (5) Å
  • c = 9.901 (1) Å
  • β = 96.389 (2)°
  • V = 1220.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.52 mm−1
  • T = 100 (2) K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.862, T max = 0.950
  • 3703 measured reflections
  • 1386 independent reflections
  • 1210 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.096
  • S = 1.11
  • 1386 reflections
  • 87 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011069/tk2256sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011069/tk2256Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

supplementary crystallographic information

Comment

The title compound, a symmetrical urea derivative, was the unexpected product from the reaction of 4-chlorophenyl isocyanate with p-tolylsulfonic acid in ethanol. The carbonyl unit of (Cl-4-C6H4)NH–C(=O)–NH(C6H4-4-Cl) lies on a twofold rotation axis, Fig. 1, that relates one aromatic ring to the other. The ring is aligned at 51.6 (1) ° with respect to the N–C(=O)–N fragment. The two –NH– fragments of one molecule forms hydrogen bonds to the C=O fragment of an adjacent molecule, giving rise to the formation of a linear hydrogen-bonded chain (Table 1). The compound has previously been synthesized from the self-condensation of 4-chlorophenyl isocyanate in acetone (Fu et al., 2007) and in water catalyzed by pyridine (Jimenez Blanco et al., 1999).

Experimental

4-Chlorophenyl isocyanate (1.0 g, 6.5 mmol) and p-toluenesulfonic acid (1.2 g, 6.5 mmol) were heated in ethanol (100 ml) for 1 h. The solution was filtered; evaporation of the solvent gave plates of the symmetrical urea.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-numbering scheme and 70% probability displacement ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlablled atoms related by a 2-fold axis of symmetry.

Crystal data

C13H10Cl2N2OF000 = 576
Mr = 281.13Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1510 reflections
a = 27.093 (3) Åθ = 3.0–28.2º
b = 4.5768 (5) ŵ = 0.52 mm1
c = 9.901 (1) ÅT = 100 (2) K
β = 96.389 (2)ºBlock, colorless
V = 1220.1 (2) Å30.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer1386 independent reflections
Radiation source: fine-focus sealed tube1210 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 100(2) Kθmax = 27.5º
ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −34→27
Tmin = 0.862, Tmax = 0.950k = −5→5
3703 measured reflectionsl = −10→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096  w = 1/[σ2(Fo2) + (0.0445P)2 + 1.607P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1386 reflectionsΔρmax = 0.31 e Å3
87 parametersΔρmin = −0.29 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.293344 (15)0.99597 (10)0.33207 (4)0.02417 (17)
O10.50000.9101 (4)0.75000.0163 (4)
N10.46380 (5)0.4789 (3)0.67795 (15)0.0149 (3)
H10.4640 (8)0.292 (2)0.691 (2)0.024 (5)*
C10.50000.6399 (5)0.75000.0130 (4)
C20.42311 (6)0.6073 (3)0.59591 (15)0.0131 (3)
C30.43093 (6)0.8150 (4)0.49760 (16)0.0152 (3)
H30.46380.87300.48540.018*
C40.39102 (6)0.9373 (4)0.41754 (17)0.0175 (4)
H40.39631.08230.35200.021*
C50.34334 (6)0.8455 (4)0.43438 (16)0.0162 (3)
C60.33491 (6)0.6357 (4)0.52957 (17)0.0183 (4)
H60.30210.57290.53910.022*
C70.37498 (6)0.5180 (4)0.61096 (17)0.0176 (4)
H70.36950.37540.67740.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0159 (2)0.0299 (3)0.0249 (3)0.00200 (17)−0.00584 (17)0.00510 (17)
O10.0173 (8)0.0094 (8)0.0207 (8)0.000−0.0037 (6)0.000
N10.0146 (7)0.0082 (6)0.0208 (7)−0.0002 (5)−0.0028 (6)0.0007 (5)
C10.0128 (10)0.0123 (11)0.0141 (10)0.0000.0025 (8)0.000
C20.0141 (7)0.0104 (7)0.0142 (7)0.0001 (6)−0.0006 (6)−0.0027 (6)
C30.0124 (7)0.0162 (8)0.0167 (8)−0.0028 (6)0.0004 (6)−0.0013 (6)
C40.0184 (8)0.0178 (8)0.0159 (8)−0.0013 (6)−0.0001 (6)0.0016 (6)
C50.0138 (8)0.0189 (8)0.0152 (8)0.0018 (6)−0.0023 (6)−0.0017 (6)
C60.0118 (8)0.0233 (9)0.0199 (8)−0.0016 (6)0.0024 (6)−0.0009 (7)
C70.0176 (8)0.0174 (8)0.0178 (8)−0.0019 (6)0.0026 (6)0.0026 (6)

Geometric parameters (Å, °)

Cl1—C51.741 (2)C3—C41.386 (2)
O1—C11.237 (3)C3—H30.9500
N1—C11.363 (2)C4—C51.386 (2)
N1—C21.422 (2)C4—H40.9500
N1—H10.87 (1)C5—C61.382 (2)
C1—N1i1.363 (2)C6—C71.387 (2)
C2—C71.390 (2)C6—H60.9500
C2—C31.393 (2)C7—H70.9500
C1—N1—C2122.9 (1)C5—C4—C3119.2 (2)
C1—N1—H1118 (1)C5—C4—H4120.4
C2—N1—H1119 (1)C3—C4—H4120.4
O1—C1—N1122.7 (1)C4—C5—C6121.3 (2)
O1—C1—N1i122.7 (1)C4—C5—Cl1119.0 (1)
N1—C1—N1i114.6 (2)C6—C5—Cl1119.65 (13)
C7—C2—C3119.5 (2)C7—C6—C5119.21 (15)
C7—C2—N1119.6 (1)C7—C6—H6120.4
C3—C2—N1120.8 (1)C5—C6—H6120.4
C4—C3—C2120.4 (2)C6—C7—C2120.42 (15)
C4—C3—H3119.8C6—C7—H7119.8
C2—C3—H3119.8C2—C7—H7119.8
C2—N1—C1—O10.4 (2)C3—C4—C5—C60.3 (3)
C2—N1—C1—N1i−179.6 (2)C3—C4—C5—Cl1−179.1 (1)
C1—N1—C2—C7−129.4 (2)C4—C5—C6—C70.9 (3)
C1—N1—C2—C352.6 (2)Cl1—C5—C6—C7−179.8 (1)
C7—C2—C3—C41.6 (2)C5—C6—C7—C2−0.8 (3)
N1—C2—C3—C4179.6 (2)C3—C2—C7—C6−0.5 (2)
C2—C3—C4—C5−1.5 (2)N1—C2—C7—C6−178.5 (2)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.87 (1)2.05 (1)2.845 (2)152 (2)

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2256).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fu, J.-L., Wang, Z. & Zhu, H. (2007). Huaxue Shiji, 29, 187–188.
  • Jimenez Blanco, J. L., Saitz Barria, C., Benito, J. M., Ortiz Mellet, C., Fuentes, J., Santoyo-Gonzalez, F. & Garcia Fernandez, J. (1999). Synthesis, pp. 1907–1914.
  • Lin, Q., Zhang, Y.-M., Wei, T.-B. & Wang, H. (2004). Acta Cryst. E60, o696–o698.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wamhoff, H., Bamberg, C., Hermann, S. & Nieger, M. (1994). J. Org. Chem.59, 3985–3993.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography