PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m612–m613.
Published online 2008 April 2. doi:  10.1107/S1600536808008611
PMCID: PMC2961191

Di-μ-iodido-bis­{[(4-fluoro­benzoyl­methyl­ene)triphenyl-λ5-phospho­rane]iodido­mercury(II)}

Abstract

In the title complex, [Hg2I4(C26H20FOP)2], the HgII centre is four-coordinate with one short Hg—I bond [2.6895 (7) Å], one Hg—C bond and two asymmetric bridging Hg—I bonds with distances of 2.7780 (8) and 3.2599 (8) Å. The title mol­ecule has a crystallographic inversion centre at the centroid of the four-membered ring formed by the two Hg atoms and two I atoms. The crystal packing is stabilized by C—H(...)O hydrogen bonds.

Related literature

For related literature, see: Baenziger et al. (1978 [triangle]); Belluco et al. (1996 [triangle]); Bent (1961 [triangle]); Holy et al. (1976 [triangle]); Kalyanasundari et al. (1995 [triangle], 1999 [triangle]); Karami (2007 [triangle]); Laavanya et al. (2001 [triangle]); Uson et al. (1985 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m612-scheme1.jpg

Experimental

Crystal data

  • [Hg2I4(C26H20FOP)2]
  • M r = 1705.56
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m612-efi1.jpg
  • a = 10.0346 (16) Å
  • b = 11.8594 (19) Å
  • c = 13.235 (2) Å
  • α = 92.513 (13)°
  • β = 111.293 (12)°
  • γ = 113.117 (12)°
  • V = 1317.4 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 8.27 mm−1
  • T = 293 (2) K
  • 0.26 × 0.17 × 0.08 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.222, T max = 0.558
  • 16225 measured reflections
  • 5553 independent reflections
  • 4486 reflections with I > 2σ(I)
  • R int = 0.156

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.089
  • S = 1.05
  • 5553 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 1.00 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008611/bt2690sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008611/bt2690Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F. 279 of the University Research Fund).

supplementary crystallographic information

Comment

The dimeric structure adopted by complexes is in contrast to the O-coordinated trinuclear mercury (II) complex of the phosphorusylide Ph3PCHCOPh (Kalyanasundari et al., 1999), but is similar to the structure of trans-di-liododiiodobis (triphenyl phosphoniumcyclopentadienylide) dimercury(II) reported by Baenziger et al. (Baenziger et al., 1978) and the C-coordinated dinuclear mercury(II) halide complexes of Ph3CHCOPh(BPPY) (Kalyanasundari et al., 1995). The C-coordination of FBPPY is in stark contrast to the O-coordination of the phosphorus ylide, Ph3PC(COMe)(COPh) (ABPPY), to a HgII centre (Laavanya et al., 2001). The difference in coordination mode between ABPPY and FBPPY to HgII can be rationalized in terms of the electronic properties and steric requirements of the ylides. The nucleophilicity of the carbanion in ABPPY is less than for FBPPY; this is due to the additional delocalization of the ylide electron density in ABPPY which is facilitated by the second carbonyl group. This will reduce the ability of ABPPY to bind via the ylidic carbon. Belluco et al. have studied steric influences on the coordination modes of ylide molecules to Pt(II) systems (Belluco et al., 1996). These authors concluded that the preferred coordination mode is via the ylidic carbon, but that steric hindrance around the metal centre or the ylidic carbon will necessitate O-coordination. Indeed, this trend is reflected here, both BPPY and FBPPY are slightly less sterically demanding than ABPPY, and both are C-coordinated to HgII.

The title molecule has a crystallographic inversion symmety in the mid-point of the four-membered ring formed by the two Hg atoms and two I atoms (Fig.1). The crystal structure of the title complex reveals that the HgII centre forms four close contacts with sp3 hybridization and has a 4-coordinate environment with one short Hg—I bond 2.6895 (7), one Hg—C bond and two asymmetric bridging Hg—I bonds at distances of 2.7780 (8) and 3.2599 (8) Å in complex [[{HgI2(FBPPY)}2]. The significant shortening of the Hg—C bond length, 2.281 (5) Å compared to analogous distances in [(C6H5)3PCHCOC6H5HgI2]2 (Kalyanasundari et al.,1995) and in [(C5H4P(C6H5)3HgI2]2 (Holy et al., 1976) [2.312 (13) and 2.292 (8) Å, respectively] must be attributed to the use of mercury orbitals with high s character for bonding to the ylidic carbon. The use of non-equivalent hybrid orbitals with high s character to bond to low electronegative atoms was proposed by Bent in the concept of isovalent hybridization to account for the variation in bond lengths and bond angles around a central atom (Bent, 1961). The terminal Hg—I bond length, 2.7780 (8) Å is comparable to 2.615 Å observed in the case of Hg2l4(ABPPY)2, which has a tetrahedral coordination environment around mercury with a bridging structure (Laavanya et al., 2001). The two bridged Hg—I bonds fall within the range 2.778 - 3.25994 Å reported for other structures (Laavanya et al., 2001) containing chloro bridged mercury. The angles around mercury vary from 94.17 (2) to111.82 (2) for I—Hg—I, a very distorted tetrahedral environment. This distortion must be due to the higher s character of the sp3 hybrid mercury orbitals involved in the above bonds and the formation of a strong Iodo bridge between the Hg atoms which requires the internal I—Hg—I angle to be considerably smaller. The stabilized resonance structure for the title ylide is destroyed by the complexes formation. On the other hand, the bond length of P(1)—C(19) in the similar ylide is 1.706 Å (Uson et al., 1985) which shows that the above bond is considerably elongated to 1.787 (6) Å in complex [{HgI2(FBPPY)}2]. The adaptation of dimeric structur in HgII ylide complex may be explained by both the preference of HgII to four coordination and the stability of the 18 electron configuration around HgII.

Experimental

To a chloroform solution (15 ml) of triphenylphosphine (1 mmol) was added 2-bromo-4-fluoroacetophenone (1 mmol) and the resulting mixture was stirred for 12 h. The solution was filtered off, and the precipitate washed with diethyl-ether and air-dried. Further treatment with aqueous NaOH solution (0.5M) led to elimination of HBr, giving the free ligand precursors FBPPY. To a solution of FBPPY (0.100 g, 0.25 mmol) in acetone (5 ml) was added mercury (II) iodide (0.114 g, 0.25 mmol). The mixture was stirred for 12 h. On concentration by removing the solvent by vacuum, a pale yellow precipitate was obtained. The products were washed with benzene and dried in vacuo. Yield: 81%, M.p. 214 °C. Analysis calculated for C52H40F2Hg2I4O2P2:C 36.6, H 2.4%. Found: C 36.45, H 2.3%, 1H NMR: 4.62(d, 1H, CH, 2JPH= 5.5 Hz), 7.1–8 (m, 19H, Ph) p.p.m. and 31P NMR: 20.34 p.p.m. (Karami, 2007).

Refinement

H atoms were placed in calculated positions and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
An ORTEP-3 view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
Fig. 2.
The packing and intermolecular hydrogen bonding interactions of the title compound.

Crystal data

[Hg2I4(C26H20FOP)2]Z = 1
Mr = 1705.56F000 = 788
Triclinic, P1Dx = 2.150 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.0346 (16) ÅCell parameters from 47681 reflections
b = 11.8594 (19) Åθ = 1.7–28.3º
c = 13.235 (2) ŵ = 8.27 mm1
α = 92.513 (13)ºT = 293 (2) K
β = 111.293 (12)ºPlate, colourless
γ = 113.117 (12)º0.26 × 0.17 × 0.08 mm
V = 1317.4 (4) Å3

Data collection

Stoe IPDSII diffractometer5553 independent reflections
Monochromator: plane graphite4486 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.156
T = 293(2) Kθmax = 27.0º
ω scansθmin = 1.7º
Absorption correction: integration(X-RED32; Stoe & Cie, 2002)h = −12→12
Tmin = 0.222, Tmax = 0.558k = −15→15
16225 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.089  w = 1/[σ2(Fo2) + (0.0388P)2 + 0.7953P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5553 reflectionsΔρmax = 1.00 e Å3
289 parametersΔρmin = −0.67 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.53557 (3)0.65438 (3)0.42856 (2)0.0581 (1)
I10.29177 (6)0.52860 (4)0.49338 (4)0.0650 (2)
I20.76379 (6)0.86528 (5)0.57953 (4)0.0727 (2)
P10.58806 (17)0.74049 (12)0.20232 (11)0.0389 (4)
F1−0.1102 (8)0.0461 (5)0.0631 (6)0.133 (3)
O10.2430 (5)0.6313 (4)0.1541 (4)0.0613 (16)
C10.7783 (7)0.7396 (5)0.2330 (5)0.0445 (17)
C20.8580 (8)0.7185 (7)0.3349 (5)0.062 (2)
C30.9949 (9)0.7038 (8)0.3566 (6)0.069 (3)
C41.0532 (9)0.7126 (8)0.2760 (7)0.074 (3)
C50.9746 (10)0.7344 (9)0.1756 (7)0.080 (3)
C60.8373 (9)0.7470 (7)0.1524 (7)0.065 (3)
C70.6204 (7)0.8894 (5)0.2717 (5)0.0442 (17)
C80.7676 (8)0.9929 (6)0.3076 (6)0.061 (2)
C90.7889 (11)1.1059 (6)0.3622 (7)0.076 (3)
C100.6674 (12)1.1146 (7)0.3787 (6)0.078 (3)
C110.5234 (11)1.0153 (7)0.3426 (7)0.072 (3)
C120.4974 (9)0.9025 (6)0.2876 (6)0.061 (2)
C130.4969 (7)0.7270 (5)0.0543 (5)0.0423 (17)
C140.5281 (8)0.8339 (6)0.0109 (5)0.0548 (19)
C150.4683 (10)0.8238 (7)−0.1016 (6)0.068 (3)
C160.3754 (10)0.7082 (7)−0.1731 (6)0.069 (2)
C170.3410 (9)0.6005 (6)−0.1319 (5)0.061 (2)
C180.4023 (8)0.6097 (5)−0.0176 (5)0.0527 (19)
C190.4769 (6)0.6070 (5)0.2440 (4)0.0401 (17)
C200.3012 (7)0.5596 (6)0.1835 (5)0.0463 (17)
C210.1984 (7)0.4217 (6)0.1586 (5)0.0539 (19)
C220.0358 (9)0.3826 (8)0.1146 (8)0.078 (3)
C23−0.0692 (11)0.2564 (10)0.0825 (10)0.107 (4)
C24−0.0083 (12)0.1715 (8)0.0951 (8)0.088 (3)
C250.1511 (11)0.2031 (7)0.1366 (7)0.081 (3)
C260.2542 (8)0.3310 (6)0.1691 (6)0.063 (2)
H20.818800.714200.389100.0740*
H31.047100.688200.424500.0830*
H41.146000.703800.289700.0890*
H51.015400.740600.122100.0960*
H60.784300.760500.083600.0780*
H80.850500.986900.295500.0730*
H90.887201.175800.387500.0900*
H100.683701.190500.415700.0940*
H110.441501.023100.354900.0860*
H120.397200.834800.261000.0730*
H140.590000.912800.058300.0650*
H150.490700.89610−0.130000.0820*
H160.335700.70260−0.249400.0820*
H170.277300.52210−0.180200.0730*
H180.380100.537400.010700.0630*
H190.505500.539400.230700.0480*
H22−0.003700.442300.106400.0940*
H23−0.178600.230400.053000.1290*
H250.188800.142400.142800.0970*
H260.363400.356100.198600.0750*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.0633 (2)0.0652 (2)0.0484 (1)0.0285 (1)0.0256 (1)0.0120 (1)
I10.0709 (3)0.0725 (3)0.0830 (3)0.0449 (2)0.0483 (3)0.0334 (2)
I20.0717 (3)0.0778 (3)0.0580 (3)0.0308 (2)0.0200 (2)−0.0026 (2)
P10.0372 (7)0.0383 (7)0.0415 (7)0.0166 (6)0.0172 (6)0.0033 (5)
F10.110 (4)0.067 (3)0.161 (6)−0.022 (3)0.062 (4)−0.009 (3)
O10.049 (2)0.065 (3)0.074 (3)0.033 (2)0.021 (2)0.015 (2)
C10.043 (3)0.039 (3)0.045 (3)0.014 (2)0.017 (2)−0.002 (2)
C20.050 (4)0.094 (5)0.036 (3)0.036 (3)0.010 (3)−0.003 (3)
C30.054 (4)0.094 (5)0.049 (4)0.037 (4)0.009 (3)−0.005 (3)
C40.050 (4)0.094 (5)0.079 (5)0.036 (4)0.025 (4)0.003 (4)
C50.077 (5)0.120 (7)0.084 (5)0.056 (5)0.059 (5)0.041 (5)
C60.066 (4)0.083 (5)0.070 (4)0.040 (4)0.043 (4)0.030 (3)
C70.048 (3)0.046 (3)0.044 (3)0.027 (3)0.018 (2)0.008 (2)
C80.057 (4)0.056 (4)0.055 (4)0.024 (3)0.010 (3)−0.007 (3)
C90.078 (5)0.045 (4)0.081 (5)0.019 (3)0.020 (4)−0.006 (3)
C100.110 (7)0.061 (4)0.067 (4)0.059 (5)0.019 (4)−0.001 (3)
C110.089 (6)0.071 (5)0.074 (5)0.051 (4)0.036 (4)0.007 (4)
C120.068 (4)0.058 (4)0.070 (4)0.036 (3)0.033 (4)0.011 (3)
C130.041 (3)0.043 (3)0.046 (3)0.021 (2)0.019 (2)0.005 (2)
C140.057 (4)0.048 (3)0.049 (3)0.018 (3)0.017 (3)0.007 (2)
C150.088 (5)0.059 (4)0.059 (4)0.031 (4)0.033 (4)0.022 (3)
C160.090 (5)0.074 (4)0.042 (3)0.044 (4)0.019 (3)0.009 (3)
C170.073 (4)0.058 (4)0.045 (3)0.031 (3)0.015 (3)−0.002 (3)
C180.060 (4)0.038 (3)0.055 (3)0.020 (3)0.021 (3)0.002 (2)
C190.040 (3)0.043 (3)0.041 (3)0.019 (2)0.020 (2)0.008 (2)
C200.041 (3)0.056 (3)0.042 (3)0.022 (3)0.017 (2)0.007 (2)
C210.045 (3)0.059 (4)0.048 (3)0.011 (3)0.023 (3)0.003 (3)
C220.048 (4)0.074 (5)0.105 (6)0.017 (4)0.036 (4)0.002 (4)
C230.052 (5)0.098 (7)0.136 (9)−0.001 (5)0.043 (5)−0.018 (6)
C240.088 (6)0.061 (5)0.082 (5)−0.008 (5)0.046 (5)−0.001 (4)
C250.087 (6)0.052 (4)0.077 (5)0.012 (4)0.025 (4)0.012 (3)
C260.052 (4)0.054 (4)0.059 (4)0.010 (3)0.014 (3)0.007 (3)

Geometric parameters (Å, °)

Hg1—I12.7780 (8)C19—C201.491 (10)
Hg1—I22.6895 (7)C20—C211.493 (9)
Hg1—C192.281 (5)C21—C221.382 (13)
Hg1—I1i3.2599 (8)C21—C261.385 (11)
P1—C11.806 (8)C22—C231.383 (15)
P1—C71.805 (6)C23—C241.356 (17)
P1—C131.805 (6)C24—C251.369 (17)
P1—C191.787 (6)C25—C261.394 (11)
F1—C241.369 (11)C2—H20.9300
O1—C201.212 (9)C3—H30.9300
C1—C21.387 (9)C4—H40.9300
C1—C61.387 (12)C5—H50.9300
C2—C31.381 (13)C6—H60.9300
C3—C41.381 (13)C8—H80.9300
C4—C51.373 (12)C9—H90.9300
C5—C61.369 (15)C10—H100.9300
C7—C81.389 (10)C11—H110.9300
C7—C121.389 (13)C12—H120.9300
C8—C91.394 (11)C14—H140.9300
C9—C101.355 (17)C15—H150.9300
C10—C111.348 (14)C16—H160.9300
C11—C121.375 (11)C17—H170.9300
C13—C141.385 (9)C18—H180.9300
C13—C181.390 (8)C19—H190.9800
C14—C151.368 (9)C22—H220.9300
C15—C161.373 (11)C23—H230.9300
C16—C171.378 (10)C25—H250.9300
C17—C181.391 (9)C26—H260.9300
Hg1···C23.694 (9)C15···H23x3.0300
Hg1···C123.624 (7)C19···H22.9400
Hg1···C264.216 (7)C19···H182.8500
Hg1···H22.8900C19···H262.6800
Hg1···H123.4500C20···H123.0300
Hg1···H263.9000C20···H182.7100
I2···C25i3.739 (8)C23···H5ix2.9500
I2···C73.863 (6)C24···H5ix3.0900
I1···H2i3.3300C26···H192.5600
I1···H10ii3.3800H2···Hg12.8900
I2···H23.3600H2···I23.3600
I2···H8iii3.2500H2···C192.9400
I2···H11ii3.1800H2···I1i3.3300
F1···C14iv3.292 (11)H3···C9iii3.0800
F1···H14iv2.7700H3···C10iii3.0400
O1···C4v3.271 (11)H3···H10iii2.5200
O1···C123.124 (8)H4···O1vi2.5900
O1···C133.135 (9)H4···H12vi2.5700
O1···C183.270 (9)H5···C23ix2.9500
O1···H4v2.5900H5···C24ix3.0900
O1···H122.3200H6···C132.6300
O1···H222.4400H6···C142.8900
C2···Hg13.694 (9)H8···C12.7400
C4···O1vi3.271 (11)H8···I2iii3.2500
C6···C143.558 (12)H10···I1ii3.3800
C7···I23.863 (6)H10···H3iii2.5200
C10···C16vii3.517 (11)H10···H16vii2.5700
C12···O13.124 (8)H11···I2ii3.1800
C12···Hg13.624 (7)H12···Hg13.4500
C13···O13.135 (9)H12···O12.3200
C14···C63.558 (12)H12···C203.0300
C14···F1viii3.292 (11)H12···H4v2.5700
C16···C10vii3.517 (11)H14···F1viii2.7700
C18···C203.177 (10)H14···C72.7700
C18···O13.270 (9)H14···C83.0200
C20···C183.177 (10)H15···C10vii3.0600
C25···I2i3.739 (8)H15···C11vii3.0200
C26···Hg14.216 (7)H16···C10vii2.8200
C1···H17ix2.9300H16···H10vii2.5700
C1···H82.7400H17···C1ix2.9300
C2···H193.0400H17···C2ix2.9300
C2···H17ix2.9300H17···C3ix3.0300
C3···H17ix3.0300H17···C6ix3.0300
C6···H17ix3.0300H18···C192.8500
C7···H142.7700H18···C202.7100
C8···H143.0200H19···C23.0400
C9···H3iii3.0800H19···C262.5600
C10···H15vii3.0600H19···H262.0000
C10···H16vii2.8200H22···O12.4400
C10···H3iii3.0400H23···C14x3.0500
C11···H15vii3.0200H23···C15x3.0300
C13···H62.6300H26···Hg13.9000
C14···H23x3.0500H26···C192.6800
C14···H62.8900H26···H192.0000
I1—Hg1—I2111.82 (2)C22—C23—C24118.2 (11)
I1—Hg1—C19116.49 (16)F1—C24—C23119.1 (11)
I1—Hg1—I1i94.17 (2)F1—C24—C25116.9 (9)
I2—Hg1—C19127.98 (15)C23—C24—C25124.0 (9)
I1i—Hg1—I297.77 (2)C24—C25—C26116.6 (9)
I1i—Hg1—C1996.90 (16)C21—C26—C25121.8 (8)
Hg1—I1—Hg1i85.84 (2)C1—C2—H2120.00
C1—P1—C7109.1 (3)C3—C2—H2120.00
C1—P1—C13106.6 (3)C2—C3—H3121.00
C1—P1—C19106.1 (3)C4—C3—H3120.00
C7—P1—C13108.4 (3)C3—C4—H4120.00
C7—P1—C19114.7 (3)C5—C4—H4120.00
C13—P1—C19111.6 (3)C4—C5—H5119.00
P1—C1—C2119.1 (6)C6—C5—H5119.00
P1—C1—C6120.8 (6)C1—C6—H6120.00
C2—C1—C6119.7 (8)C5—C6—H6121.00
C1—C2—C3120.7 (7)C7—C8—H8121.00
C2—C3—C4119.0 (7)C9—C8—H8121.00
C3—C4—C5120.1 (10)C8—C9—H9120.00
C4—C5—C6121.4 (9)C10—C9—H9120.00
C1—C6—C5119.1 (8)C9—C10—H10119.00
P1—C7—C8120.4 (6)C11—C10—H10119.00
P1—C7—C12120.4 (5)C10—C11—H11120.00
C8—C7—C12119.2 (6)C12—C11—H11120.00
C7—C8—C9118.8 (8)C7—C12—H12120.00
C8—C9—C10120.4 (8)C11—C12—H12120.00
C9—C10—C11121.3 (8)C13—C14—H14120.00
C10—C11—C12120.1 (11)C15—C14—H14120.00
C7—C12—C11120.2 (8)C14—C15—H15120.00
P1—C13—C14120.0 (5)C16—C15—H15120.00
P1—C13—C18120.6 (4)C15—C16—H16120.00
C14—C13—C18119.3 (6)C17—C16—H16120.00
C13—C14—C15120.2 (6)C16—C17—H17120.00
C14—C15—C16120.8 (7)C18—C17—H17120.00
C15—C16—C17120.1 (7)C13—C18—H18120.00
C16—C17—C18119.6 (6)C17—C18—H18120.00
C13—C18—C17120.0 (5)Hg1—C19—H19109.00
Hg1—C19—P1110.7 (3)P1—C19—H19109.00
Hg1—C19—C20106.7 (4)C20—C19—H19109.00
P1—C19—C20113.5 (4)C21—C22—H22119.00
O1—C20—C19120.8 (6)C23—C22—H22119.00
O1—C20—C21120.6 (7)C22—C23—H23121.00
C19—C20—C21118.6 (6)C24—C23—H23121.00
C20—C21—C22117.0 (7)C24—C25—H25122.00
C20—C21—C26124.6 (7)C26—C25—H25122.00
C22—C21—C26118.3 (7)C21—C26—H26119.00
C21—C22—C23121.2 (9)C25—C26—H26119.00
I2—Hg1—I1—Hg1i−100.09 (2)P1—C1—C2—C3173.0 (6)
C19—Hg1—I1—Hg1i99.83 (17)C1—C2—C3—C41.1 (12)
I1i—Hg1—I1—Hg1i0.00 (4)C2—C3—C4—C5−0.7 (13)
I1i—Hg1i—I1—Hg10.00 (5)C3—C4—C5—C6−0.5 (14)
I2i—Hg1i—I1—Hg1−112.71 (2)C4—C5—C6—C11.1 (13)
C19i—Hg1i—I1—Hg1117.34 (16)C8—C7—C12—C11−2.8 (10)
I2—Hg1—C19—C20−131.8 (3)P1—C7—C8—C9−179.1 (6)
I1i—Hg1—C19—C20122.7 (4)P1—C7—C12—C11178.6 (6)
I2—Hg1—C19—P1−7.9 (4)C12—C7—C8—C92.3 (10)
I1i—Hg1—C19—P1−113.4 (3)C7—C8—C9—C10−0.7 (11)
I1—Hg1—C19—P1148.4 (2)C8—C9—C10—C11−0.4 (12)
I1—Hg1—C19—C2024.6 (4)C9—C10—C11—C12−0.2 (12)
C19—P1—C1—C2−45.5 (6)C10—C11—C12—C71.8 (12)
C7—P1—C1—C6−108.0 (6)P1—C13—C14—C15175.4 (7)
C7—P1—C1—C278.5 (6)C18—C13—C14—C15−1.0 (13)
C13—P1—C1—C2−164.6 (5)P1—C13—C18—C17−175.9 (7)
C1—P1—C7—C12−162.1 (5)C14—C13—C18—C170.5 (13)
C13—P1—C1—C68.8 (6)C13—C14—C15—C160.7 (15)
C19—P1—C1—C6127.9 (5)C14—C15—C16—C170.1 (16)
C7—P1—C19—C2084.7 (5)C15—C16—C17—C18−0.7 (16)
C13—P1—C19—C20−39.2 (5)C16—C17—C18—C130.3 (14)
C7—P1—C13—C1429.7 (8)Hg1—C19—C20—O189.0 (6)
C19—P1—C13—C14157.0 (6)Hg1—C19—C20—C21−91.8 (6)
C1—P1—C13—C1888.8 (7)P1—C19—C20—O1−33.2 (8)
C13—P1—C7—C1282.2 (6)P1—C19—C20—C21146.1 (5)
C19—P1—C7—C12−43.3 (6)O1—C20—C21—C22−8.3 (10)
C1—P1—C19—C20−154.9 (4)O1—C20—C21—C26166.9 (7)
C1—P1—C13—C14−87.6 (7)C19—C20—C21—C22172.4 (7)
C7—P1—C13—C18−154.0 (7)C19—C20—C21—C26−12.4 (10)
C19—P1—C13—C18−26.7 (8)C20—C21—C22—C23176.0 (9)
C1—P1—C7—C819.3 (6)C26—C21—C22—C230.5 (13)
C13—P1—C19—Hg1−159.0 (3)C20—C21—C26—C25−175.1 (7)
C13—P1—C7—C8−96.3 (6)C22—C21—C26—C250.0 (11)
C7—P1—C19—Hg1−35.2 (4)C21—C22—C23—C24−0.2 (16)
C1—P1—C19—Hg185.3 (3)C22—C23—C24—F1−179.5 (9)
C19—P1—C7—C8138.1 (5)C22—C23—C24—C25−0.8 (17)
C2—C1—C6—C5−0.6 (11)F1—C24—C25—C26−180.0 (8)
P1—C1—C6—C5−174.0 (6)C23—C24—C25—C261.3 (15)
C6—C1—C2—C3−0.5 (11)C24—C25—C26—C21−0.9 (12)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+2, −y+2, −z+1; (iv) x−1, y−1, z; (v) x−1, y, z; (vi) x+1, y, z; (vii) −x+1, −y+2, −z; (viii) x+1, y+1, z; (ix) −x+1, −y+1, −z; (x) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O1vi0.932.593.271 (11)131
C12—H12···O10.932.323.124 (8)144
C22—H22···O10.932.442.749 (10)100

Symmetry codes: (vi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2690).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Baenziger, N. C., Flynn, R. M., Swenson, D. C. & Holy, N. L. (1978). Acta Cryst B34, 2300-2301.
  • Belluco, U., Michelin, R. A., Bertini, R., Facchin, G., Pace, G., Zanotto, L., Mozzon, M., Furlan, M. & Zangrando, E. (1996). Inorg. Chim. Acta, 252, 355–366.
  • Bent, H. A. (1961). Chem. Rev.61, 275–311.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Holy, N. L., Baenziger, N. C., Flynn, R. M. & Swenson, D. C. (1976). J. Am. Chem. Soc.98, 7823–7824.
  • Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V. & Robinson, W. T. (1999). Bull. Chem. Soc. Jpn, 72, 33–36.
  • Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Wen, H. (1995). J. Organomet. Chem.491, 103–109.
  • Karami, K. (2007). J. Chem. Res. (S), pp. 725–727.
  • Laavanya, P., Venkatasubramanian, U., Panchanatheswaran, K. & Bauer, J. A. K. (2001). Chem. Commun. pp. 1660–1661. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Uson, R., Fornies, J., Navarro, R., Espinet, P. & Mendivil, C. (1985). J. Organomet. Chem.290, 125–131.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography