PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o832.
Published online 2008 April 10. doi:  10.1107/S1600536808009501
PMCID: PMC2961187

N-[(2,4-Dimethyl­phen­yl)carbamothio­yl]-2-methyl­benzamide

Abstract

The title compound, C17H18N2OS, adopts a transcis geometry of the thio­urea group which is stabilized by intra­molecular hydrogen bonds between the O atom of the carbonyl group and the H atom of the thio­amide group. A C—H(...)S intramolecular hydrogen bond is also present. In the crystal structure, mol­ecules are linked by inter­molecular N—H(...)S hydrogen bonds to form centrosymmetric dimers.

Related literature

For the crystal structure of 1-(2,3-dimethyl­phen­yl)-3-(2-methyl­benzo­yl)thio­urea, which is isomeric with the title compound, see: Khawar Rauf et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o832-scheme1.jpg

Experimental

Crystal data

  • C17H18N2OS
  • M r = 298.39
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o832-efi1.jpg
  • a = 6.2569 (15) Å
  • b = 9.862 (2) Å
  • c = 13.986 (3) Å
  • α = 69.461 (4)°
  • β = 86.199 (4)°
  • γ = 75.206 (4)°
  • V = 781.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 298 (2) K
  • 0.27 × 0.18 × 0.09 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.946, T max = 0.982
  • 7817 measured reflections
  • 2904 independent reflections
  • 2069 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.119
  • S = 1.02
  • 2904 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009501/at2557sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009501/at2557Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Higher Education of Malaysia for Fundamental Research Grants OUP UKM-OUP-BIT-28/20076 and UMT-FRGS-59001, and Universiti Kebangsaan Malaysia and HEJ Research Institute of Chemistry, University of Karachi, for research facilities.

supplementary crystallographic information

Comment

The title compound, (I), is isomeric to the previously reported 1-(2,3-dimethylphenyl)-3-(2-methylbenzoyl)thiourea (II), (Khawar Rauf et al., 2007) with the difference that the 2,3-dimethylphenyl ring is replaced by 2,4-dimethylphenyl (Fig.1). The bond lengths and angles are in normal range (Allen et al., 1987) and in agreement with those in (II). The central thiourea moiety (S1/N1/N2/C9), 2-methylbenzoyl (C1—C8), and 2,3-dimethylphenyl (C10—C15) rings are each planar with a maximum deviation of 0.040 (2)Å for C8 atom from the least square plane. The dihedral angles between the thiourea moiety and the 2-methylbenzoyl and 2,3-dimethylphenyl rings are 52.96 (11) and 70.34 (12)°, respectively. The trans-cis geometry of the thiourea moiety is stabilized by N2—H2···O1 and C17—H17B···S1 intramolecular hydrogen bonds. In the crystal structure, the molecules are linked to form dimers by the N1—H1···S1 intermolecular hydrogen bond (symmtery codes as in Table 2) and arranged parallel to c axis (Fig.2).

Experimental

The mixture of 2-methylbenzoyl chloride (9.720 g, 0.025 mol) with the equimolar amount of ammonium thiocyanate (1.903 g, 0.025 mol) and 2,3-dimethyl aniline (3.025 g, 0.025 mol) in 40 ml dry acetone was refluxed with stirring for 4 h. The solution was filtered and left to evaporate at room temperature. The colourless crystals obtained after a few days, was found suitable for X-ray investigations. The yield was 85% with melting point 413.2–415.7 K.

Refinement

H atoms on the C and N parent atoms were positioned geomatrically, with C—H = 0.96, 0.93 and N—H = 0.86Å

and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH and NH) and 1.5Ueq(CH3).

Figures

Fig. 1.
The molecular sStructure of (I) with displacement ellipsoids drawn at 50% probability level. The dashed lines indicates the intramolecular hydrogen bonds.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown by dashed lines.

Crystal data

C17H18N2OSZ = 2
Mr = 298.39F000 = 316
Triclinic, P1Dx = 1.269 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.2569 (15) ÅCell parameters from 1377 reflections
b = 9.862 (2) Åθ = 1.5–25.5º
c = 13.986 (3) ŵ = 0.21 mm1
α = 69.461 (4)ºT = 298 (2) K
β = 86.199 (4)ºSlab, colourless
γ = 75.206 (4)º0.27 × 0.18 × 0.09 mm
V = 781.1 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer2904 independent reflections
Radiation source: fine-focus sealed tube2069 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
Detector resolution: 83.66 pixels mm-1θmax = 25.5º
T = 298(2) Kθmin = 1.5º
ω scansh = −7→7
Absorption correction: multi-scan(SADABS; Bruker, 2000)k = −11→11
Tmin = 0.946, Tmax = 0.982l = −16→16
7817 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.119  w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1084P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2904 reflectionsΔρmax = 0.23 e Å3
193 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.00124 (10)0.51524 (6)0.34145 (4)0.0441 (2)
O10.2196 (3)0.02671 (18)0.54848 (13)0.0630 (5)
N10.1412 (3)0.27939 (19)0.50519 (13)0.0374 (4)
H10.13410.34730.53130.045*
N20.0595 (3)0.22917 (19)0.36460 (13)0.0394 (5)
H20.08830.13750.40480.047*
C10.2131 (4)0.0521 (3)0.75752 (18)0.0519 (6)
H1A0.10420.00510.75370.062*
C20.2787 (5)0.0473 (3)0.85127 (19)0.0644 (8)
H2A0.2120−0.00070.91050.077*
C30.4424 (5)0.1138 (3)0.8562 (2)0.0639 (8)
H30.48640.11120.91920.077*
C40.5414 (4)0.1835 (3)0.77013 (19)0.0541 (7)
H40.65430.22640.77540.065*
C50.4783 (4)0.1923 (3)0.67457 (17)0.0430 (6)
C60.3089 (3)0.1265 (2)0.66943 (16)0.0367 (5)
C70.5968 (5)0.2679 (4)0.5822 (2)0.0696 (8)
H7A0.50200.36250.54330.104*
H7B0.63550.20600.54070.104*
H7C0.72860.28350.60340.104*
C80.2225 (4)0.1361 (2)0.56942 (17)0.0393 (5)
C90.0679 (3)0.3321 (2)0.40383 (15)0.0334 (5)
C100.0056 (4)0.2603 (2)0.25979 (16)0.0366 (5)
C110.1738 (4)0.2193 (3)0.19879 (18)0.0473 (6)
H110.31670.17400.22590.057*
C120.1297 (4)0.2456 (3)0.09727 (19)0.0538 (7)
H120.24400.21810.05650.065*
C13−0.0810 (4)0.3119 (3)0.05573 (17)0.0499 (6)
C14−0.2460 (4)0.3481 (3)0.11976 (17)0.0463 (6)
H14−0.38950.39100.09290.056*
C15−0.2098 (4)0.3239 (2)0.22153 (16)0.0394 (5)
C16−0.1300 (5)0.3419 (3)−0.05520 (19)0.0748 (9)
H16A−0.09530.4338−0.09680.112*
H16B−0.28390.3494−0.06430.112*
H16C−0.04200.2614−0.07500.112*
C17−0.3997 (4)0.3598 (3)0.28774 (19)0.0564 (7)
H17A−0.53620.39170.24930.085*
H17B−0.38280.43830.30990.085*
H17C−0.40150.27230.34620.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0630 (4)0.0333 (3)0.0343 (3)−0.0086 (3)−0.0061 (3)−0.0108 (2)
O10.1010 (14)0.0356 (9)0.0529 (11)−0.0138 (9)−0.0262 (10)−0.0130 (8)
N10.0502 (11)0.0303 (9)0.0333 (10)−0.0070 (8)−0.0101 (8)−0.0128 (8)
N20.0524 (12)0.0300 (9)0.0347 (10)−0.0063 (8)−0.0104 (8)−0.0107 (8)
C10.0657 (16)0.0445 (14)0.0448 (15)−0.0180 (12)−0.0029 (12)−0.0108 (12)
C20.092 (2)0.0591 (17)0.0327 (14)−0.0153 (16)0.0040 (14)−0.0072 (13)
C30.089 (2)0.0587 (17)0.0398 (16)−0.0019 (16)−0.0202 (15)−0.0193 (13)
C40.0576 (16)0.0573 (16)0.0483 (16)−0.0066 (13)−0.0184 (13)−0.0214 (13)
C50.0421 (13)0.0453 (14)0.0402 (14)−0.0053 (11)−0.0066 (11)−0.0157 (11)
C60.0424 (13)0.0311 (11)0.0339 (12)−0.0037 (10)−0.0052 (10)−0.0109 (10)
C70.0598 (17)0.101 (2)0.0598 (18)−0.0409 (16)0.0074 (14)−0.0278 (17)
C80.0450 (13)0.0363 (12)0.0380 (13)−0.0111 (10)−0.0058 (10)−0.0127 (10)
C90.0319 (11)0.0387 (12)0.0313 (12)−0.0077 (9)−0.0019 (9)−0.0144 (10)
C100.0494 (14)0.0326 (11)0.0315 (12)−0.0110 (10)−0.0056 (10)−0.0135 (9)
C110.0478 (14)0.0472 (14)0.0487 (15)−0.0026 (11)−0.0052 (12)−0.0239 (12)
C120.0579 (17)0.0569 (16)0.0475 (15)−0.0036 (13)0.0052 (13)−0.0274 (13)
C130.0694 (17)0.0452 (14)0.0338 (13)−0.0083 (12)−0.0056 (12)−0.0152 (11)
C140.0504 (14)0.0455 (14)0.0404 (14)−0.0049 (11)−0.0128 (11)−0.0143 (11)
C150.0428 (13)0.0400 (12)0.0361 (13)−0.0090 (10)−0.0031 (10)−0.0141 (10)
C160.101 (2)0.080 (2)0.0370 (15)−0.0053 (17)−0.0084 (15)−0.0226 (14)
C170.0470 (15)0.0767 (19)0.0493 (16)−0.0126 (13)−0.0008 (12)−0.0279 (14)

Geometric parameters (Å, °)

S1—C91.660 (2)C7—H7A0.9600
O1—C81.218 (3)C7—H7B0.9600
N1—C81.366 (3)C7—H7C0.9600
N1—C91.392 (3)C10—C111.380 (3)
N1—H10.8600C10—C151.387 (3)
N2—C91.325 (3)C11—C121.384 (3)
N2—C101.433 (3)C11—H110.9300
N2—H20.8600C12—C131.378 (3)
C1—C61.381 (3)C12—H120.9300
C1—C21.381 (3)C13—C141.381 (3)
C1—H1A0.9300C13—C161.511 (3)
C2—C31.367 (4)C14—C151.383 (3)
C2—H2A0.9300C14—H140.9300
C3—C41.358 (4)C15—C171.505 (3)
C3—H30.9300C16—H16A0.9600
C4—C51.386 (3)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
C5—C61.395 (3)C17—H17A0.9600
C5—C71.501 (3)C17—H17B0.9600
C6—C81.496 (3)C17—H17C0.9600
C8—N1—C9129.81 (17)N2—C9—N1116.13 (18)
C8—N1—H1115.1N2—C9—S1125.20 (16)
C9—N1—H1115.1N1—C9—S1118.67 (15)
C9—N2—C10124.43 (18)C11—C10—C15120.8 (2)
C9—N2—H2117.8C11—C10—N2117.8 (2)
C10—N2—H2117.8C15—C10—N2121.3 (2)
C6—C1—C2120.2 (2)C10—C11—C12120.0 (2)
C6—C1—H1A119.9C10—C11—H11120.0
C2—C1—H1A119.9C12—C11—H11120.0
C3—C2—C1119.4 (2)C13—C12—C11121.0 (2)
C3—C2—H2A120.3C13—C12—H12119.5
C1—C2—H2A120.3C11—C12—H12119.5
C4—C3—C2120.7 (2)C12—C13—C14117.4 (2)
C4—C3—H3119.7C12—C13—C16121.2 (2)
C2—C3—H3119.7C14—C13—C16121.4 (2)
C3—C4—C5121.6 (2)C13—C14—C15123.6 (2)
C3—C4—H4119.2C13—C14—H14118.2
C5—C4—H4119.2C15—C14—H14118.2
C4—C5—C6117.7 (2)C14—C15—C10117.2 (2)
C4—C5—C7119.4 (2)C14—C15—C17120.6 (2)
C6—C5—C7122.9 (2)C10—C15—C17122.2 (2)
C1—C6—C5120.4 (2)C13—C16—H16A109.5
C1—C6—C8118.0 (2)C13—C16—H16B109.5
C5—C6—C8121.57 (19)H16A—C16—H16B109.5
C5—C7—H7A109.5C13—C16—H16C109.5
C5—C7—H7B109.5H16A—C16—H16C109.5
H7A—C7—H7B109.5H16B—C16—H16C109.5
C5—C7—H7C109.5C15—C17—H17A109.5
H7A—C7—H7C109.5C15—C17—H17B109.5
H7B—C7—H7C109.5H17A—C17—H17B109.5
O1—C8—N1123.27 (19)C15—C17—H17C109.5
O1—C8—C6123.18 (19)H17A—C17—H17C109.5
N1—C8—C6113.52 (18)H17B—C17—H17C109.5
C6—C1—C2—C3−1.5 (4)C10—N2—C9—S14.5 (3)
C1—C2—C3—C4−0.3 (4)C8—N1—C9—N25.5 (3)
C2—C3—C4—C51.2 (4)C8—N1—C9—S1−173.80 (17)
C3—C4—C5—C6−0.2 (3)C9—N2—C10—C11108.4 (2)
C3—C4—C5—C7−178.7 (3)C9—N2—C10—C15−74.2 (3)
C2—C1—C6—C52.5 (3)C15—C10—C11—C121.9 (3)
C2—C1—C6—C8−176.4 (2)N2—C10—C11—C12179.4 (2)
C4—C5—C6—C1−1.7 (3)C10—C11—C12—C13−0.3 (4)
C7—C5—C6—C1176.8 (2)C11—C12—C13—C14−1.3 (4)
C4—C5—C6—C8177.2 (2)C11—C12—C13—C16179.6 (2)
C7—C5—C6—C8−4.3 (3)C12—C13—C14—C151.3 (4)
C9—N1—C8—O1−8.8 (4)C16—C13—C14—C15−179.6 (2)
C9—N1—C8—C6173.14 (19)C13—C14—C15—C100.3 (3)
C1—C6—C8—O1−57.8 (3)C13—C14—C15—C17−177.2 (2)
C5—C6—C8—O1123.3 (3)C11—C10—C15—C14−1.9 (3)
C1—C6—C8—N1120.3 (2)N2—C10—C15—C14−179.21 (19)
C5—C6—C8—N1−58.6 (3)C11—C10—C15—C17175.5 (2)
C10—N2—C9—N1−174.81 (18)N2—C10—C15—C17−1.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.032.706135
C17—H17B···S10.962.803.496130
N1—H1···S1i0.862.573.372155

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2557).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256–o1257.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography