PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o921.
Published online 2008 April 26. doi:  10.1107/S1600536808011136
PMCID: PMC2961184

N′-(5-Fluoro-2-oxo-2,3-dihydro-1H-indol-3-yl­idene)benzene­sulfono­hydrazide

Abstract

The mol­ecule of the title compound, C14H10FN3O3S, consists of an indole unit and a phenylsulfonyl unit that are disposed in an approximately trans orientation relative to the N—N single bond. Two mol­ecules are arranged about a center of inversion, forming a hydrazide–carbonyl N—H(...)O hydrogen-bonded dimer; the dimers are linked by an indole–sulfonyl N—H(...)O hydrogen bond into a ribbon.

Related literature

For the crystal structures of related 3-indole benzene­sulfonyl­hydrazones, see: Ali et al. (2007a [triangle],b [triangle],c [triangle]). For the crystal structure of 5-fluoro-1H-indole-2,3-dione, see: Naumov et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o921-scheme1.jpg

Experimental

Crystal data

  • C14H10FN3O3S
  • M r = 319.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o921-efi1.jpg
  • a = 8.2218 (2) Å
  • b = 16.4933 (3) Å
  • c = 10.8585 (2) Å
  • β = 110.249 (1)°
  • V = 1381.46 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 123 (2) K
  • 0.50 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.816, T max = 0.962
  • 10513 measured reflections
  • 3166 independent reflections
  • 2741 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.145
  • S = 1.20
  • 3166 reflections
  • 207 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011136/sg2224sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011136/sg2224Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Science Fund (12–02-03–2031) for supporting this study.

supplementary crystallographic information

Comment

We have reported the crystal structures of 3-indole benzenesulfonohydrazides (Ali et al., 2007a, 2007b, 2007c). The studies continue with the benzenesulfonohydrazide that is obtained by condensing benzenesulfonohydrazine with a substituted 1H-indol-2,3-dione, 5-fluroisatin. This compound exists as a hydrogen-bonded dimer (Naumov et al., 2000). The title compound (Scheme I) has the indolyl fused-ring portion and the phenylsulfonyl portion disposed in an approximately trans-alignment relative to the N–N single-bond (Fig. 1). Two molecules are arranged about a center-of-inversion to form an N–Hhydrazide···Ocarbonyl hydrogen-bonded dimer; the dimers are linked by another N–Hindole···Osulfonyl hydrogen bond into a ribbon structure (Fig. 2).

Experimental

Benzenesulfonyl hydrazide (0. 69 g, 4 mmol) and 5-fluoroisatin (0.66 g, 4 mmol) were heated in ethanol (50 ml) for an hour. The solution when cooled afforded yellow crystals.

Refinement

The carbon-bound H atoms were placed at calculated positions (C–H 0.95 Å), and were included in the refinement in the riding model approximation with U(H) set to 1.2Ueq(C). The amino H atoms were located in a difference Fouier map, and were refined with a distance restraint of N–H 0.88±0.01 Å.

Figures

Fig. 1.
Thermal ellipsoid plot of C14H10FN3O3S. Displacement ellipsoids are drawn at the 70% probability level, and H atoms are shown as spheres of arbitrary radii.
Fig. 2.
Ribbon structure of C10H10FN3O3S.

Crystal data

C14H10FN3O3SF000 = 656
Mr = 319.31Dx = 1.535 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6063 reflections
a = 8.2218 (2) Åθ = 3.0–31.3º
b = 16.4933 (3) ŵ = 0.26 mm1
c = 10.8585 (2) ÅT = 123 (2) K
β = 110.249 (1)ºIrregular block, yellow
V = 1381.46 (5) Å30.50 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer3166 independent reflections
Radiation source: medium-focus sealed tube2741 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 123(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.816, Tmax = 0.962k = −21→21
10513 measured reflectionsl = −13→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145  w = 1/[σ2(Fo2) + (0.0922P)2 + 0.2432P] where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
3166 reflectionsΔρmax = 0.54 e Å3
207 parametersΔρmin = −0.59 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. A medium-focus collimator of 0.8 mm diameter was used on the diffractometer to measure the somewhat large crystal.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.65386 (5)0.28692 (2)0.54366 (4)0.01609 (16)
O10.61921 (18)0.21966 (7)0.61409 (14)0.0248 (3)
O20.56524 (17)0.29375 (8)0.40497 (13)0.0255 (3)
O30.42474 (17)0.51614 (8)0.60498 (13)0.0240 (3)
N10.59808 (19)0.37034 (9)0.60384 (14)0.0183 (3)
H1N0.557 (3)0.4089 (11)0.546 (2)0.036 (7)*
N20.67998 (18)0.38149 (8)0.73560 (14)0.0172 (3)
N30.5337 (2)0.57008 (9)0.81558 (16)0.0232 (3)
H3N0.478 (3)0.6168 (9)0.799 (2)0.038 (7)*
C10.8794 (2)0.29132 (9)0.58025 (17)0.0165 (3)
C20.9467 (3)0.33843 (13)0.50285 (19)0.0277 (4)
H20.87300.36960.43180.033*
C31.1256 (3)0.33841 (16)0.5329 (2)0.0368 (5)
H31.17540.37030.48230.044*
C41.2315 (3)0.29211 (13)0.6361 (2)0.0349 (5)
H41.35300.29140.65410.042*
C51.1624 (2)0.24721 (12)0.7127 (2)0.0300 (4)
H51.23640.21640.78410.036*
C60.9846 (2)0.24692 (10)0.68578 (19)0.0227 (4)
H60.93600.21670.73900.027*
C70.6472 (2)0.44753 (10)0.78623 (17)0.0174 (3)
C80.7275 (2)0.47125 (10)0.92317 (17)0.0182 (4)
C90.8561 (2)0.43576 (10)1.02774 (17)0.0219 (4)
H90.90690.38531.01920.026*
C100.9065 (3)0.47769 (11)1.14518 (18)0.0252 (4)
C110.8372 (3)0.55171 (11)1.16168 (19)0.0285 (4)
H110.87650.57791.24470.034*
C120.7090 (3)0.58763 (11)1.05538 (19)0.0276 (4)
H120.65970.63851.06410.033*
C130.6564 (2)0.54660 (10)0.93715 (18)0.0204 (4)
C140.5206 (2)0.51454 (10)0.72023 (17)0.0187 (4)
F11.03509 (17)0.44573 (7)1.25055 (11)0.0374 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0133 (2)0.0151 (2)0.0192 (3)−0.00149 (13)0.00483 (17)−0.00402 (14)
O10.0232 (7)0.0164 (6)0.0388 (8)−0.0042 (5)0.0157 (6)−0.0018 (5)
O20.0199 (7)0.0309 (7)0.0207 (7)−0.0001 (5)0.0006 (5)−0.0086 (5)
O30.0257 (7)0.0238 (6)0.0195 (6)0.0050 (5)0.0039 (5)−0.0003 (5)
N10.0202 (7)0.0158 (7)0.0180 (7)0.0032 (5)0.0053 (6)−0.0009 (5)
N20.0179 (7)0.0163 (7)0.0179 (7)−0.0007 (5)0.0069 (6)−0.0010 (5)
N30.0250 (8)0.0194 (7)0.0219 (8)0.0074 (6)0.0039 (6)−0.0024 (6)
C10.0132 (8)0.0191 (8)0.0172 (8)−0.0017 (6)0.0053 (6)−0.0053 (6)
C20.0251 (9)0.0409 (11)0.0185 (9)−0.0057 (8)0.0093 (7)0.0000 (8)
C30.0284 (10)0.0596 (14)0.0287 (11)−0.0140 (10)0.0178 (9)−0.0058 (10)
C40.0153 (9)0.0477 (13)0.0424 (12)−0.0030 (8)0.0108 (9)−0.0180 (10)
C50.0196 (9)0.0262 (10)0.0370 (11)0.0035 (7)0.0005 (8)−0.0062 (8)
C60.0202 (8)0.0180 (8)0.0269 (9)0.0000 (6)0.0042 (7)0.0001 (7)
C70.0182 (8)0.0154 (7)0.0191 (8)0.0007 (6)0.0072 (7)0.0000 (6)
C80.0223 (8)0.0144 (7)0.0183 (8)−0.0007 (6)0.0076 (7)−0.0013 (6)
C90.0266 (9)0.0166 (8)0.0207 (9)0.0012 (6)0.0059 (7)0.0019 (6)
C100.0287 (9)0.0225 (9)0.0197 (9)−0.0010 (7)0.0023 (7)0.0037 (7)
C110.0364 (11)0.0251 (9)0.0202 (9)−0.0022 (8)0.0052 (8)−0.0058 (7)
C120.0327 (10)0.0217 (9)0.0251 (10)0.0039 (8)0.0059 (8)−0.0073 (7)
C130.0216 (8)0.0180 (8)0.0206 (9)0.0019 (6)0.0060 (7)−0.0008 (6)
C140.0184 (8)0.0172 (8)0.0206 (9)0.0016 (6)0.0069 (7)0.0005 (6)
F10.0471 (8)0.0298 (6)0.0211 (6)0.0055 (5)−0.0061 (5)0.0026 (5)

Geometric parameters (Å, °)

S1—O11.4309 (13)C4—C51.375 (3)
S1—O21.4325 (14)C4—H40.9500
S1—N11.6545 (14)C5—C61.388 (3)
S1—C11.7582 (17)C5—H50.9500
O3—C141.227 (2)C6—H60.9500
N1—N21.367 (2)C7—C81.456 (2)
N1—H1N0.876 (10)C7—C141.518 (2)
N2—C71.290 (2)C8—C91.385 (2)
N3—C141.358 (2)C8—C131.404 (2)
N3—C131.410 (2)C9—C101.382 (3)
N3—H3N0.884 (10)C9—H90.9500
C1—C61.383 (2)C10—F11.366 (2)
C1—C21.392 (3)C10—C111.385 (3)
C2—C31.392 (3)C11—C121.397 (3)
C2—H20.9500C11—H110.9500
C3—C41.386 (3)C12—C131.382 (3)
C3—H30.9500C12—H120.9500
O1—S1—O2119.99 (8)C1—C6—C5118.97 (18)
O1—S1—N1107.46 (8)C1—C6—H6120.5
O2—S1—N1103.90 (8)C5—C6—H6120.5
O1—S1—C1107.50 (8)N2—C7—C8125.06 (15)
O2—S1—C1110.32 (8)N2—C7—C14128.61 (16)
N1—S1—C1106.93 (7)C8—C7—C14106.32 (14)
N2—N1—S1114.96 (11)C9—C8—C13120.91 (16)
N2—N1—H1N125.5 (17)C9—C8—C7132.16 (16)
S1—N1—H1N114.2 (17)C13—C8—C7106.84 (15)
C7—N2—N1117.39 (14)C10—C9—C8116.43 (16)
C14—N3—C13111.76 (15)C10—C9—H9121.8
C14—N3—H3N122.4 (17)C8—C9—H9121.8
C13—N3—H3N125.6 (17)F1—C10—C9118.54 (17)
C6—C1—C2122.02 (17)F1—C10—C11117.74 (17)
C6—C1—S1118.29 (14)C9—C10—C11123.70 (17)
C2—C1—S1119.69 (14)C10—C11—C12119.57 (17)
C1—C2—C3117.85 (19)C10—C11—H11120.2
C1—C2—H2121.1C12—C11—H11120.2
C3—C2—H2121.1C13—C12—C11117.64 (17)
C4—C3—C2120.4 (2)C13—C12—H12121.2
C4—C3—H3119.8C11—C12—H12121.2
C2—C3—H3119.8C12—C13—C8121.74 (17)
C5—C4—C3120.72 (19)C12—C13—N3128.89 (16)
C5—C4—H4119.6C8—C13—N3109.37 (15)
C3—C4—H4119.6O3—C14—N3128.06 (16)
C4—C5—C6119.97 (19)O3—C14—C7126.22 (15)
C4—C5—H5120.0N3—C14—C7105.70 (15)
C6—C5—H5120.0
O1—S1—N1—N257.51 (14)C14—C7—C8—C13−0.74 (19)
O2—S1—N1—N2−174.35 (12)C13—C8—C9—C101.2 (3)
C1—S1—N1—N2−57.66 (14)C7—C8—C9—C10177.29 (18)
S1—N1—N2—C7176.78 (12)C8—C9—C10—F1−178.89 (16)
O1—S1—C1—C6−14.56 (16)C8—C9—C10—C11−0.6 (3)
O2—S1—C1—C6−147.07 (13)F1—C10—C11—C12178.16 (18)
N1—S1—C1—C6100.57 (14)C9—C10—C11—C12−0.1 (3)
O1—S1—C1—C2165.08 (14)C10—C11—C12—C130.3 (3)
O2—S1—C1—C232.58 (16)C11—C12—C13—C80.3 (3)
N1—S1—C1—C2−79.78 (16)C11—C12—C13—N3−178.45 (19)
C6—C1—C2—C31.4 (3)C9—C8—C13—C12−1.1 (3)
S1—C1—C2—C3−178.20 (16)C7—C8—C13—C12−178.09 (17)
C1—C2—C3—C40.5 (3)C9—C8—C13—N3177.87 (16)
C2—C3—C4—C5−1.8 (3)C7—C8—C13—N30.9 (2)
C3—C4—C5—C61.0 (3)C14—N3—C13—C12178.14 (19)
C2—C1—C6—C5−2.2 (3)C14—N3—C13—C8−0.8 (2)
S1—C1—C6—C5177.47 (14)C13—N3—C14—O3178.88 (18)
C4—C5—C6—C10.9 (3)C13—N3—C14—C70.3 (2)
N1—N2—C7—C8−177.31 (15)N2—C7—C14—O30.9 (3)
N1—N2—C7—C143.5 (3)C8—C7—C14—O3−178.35 (17)
N2—C7—C8—C93.5 (3)N2—C7—C14—N3179.59 (17)
C14—C7—C8—C9−177.21 (18)C8—C7—C14—N30.29 (19)
N2—C7—C8—C13179.93 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O3i0.88 (1)2.10 (2)2.896 (2)151 (2)
N3—H3n···O1ii0.88 (1)2.22 (2)2.986 (2)145 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2224).

References

  • Ali, H. M., Nazzatush Shimar, J., Wan Jefrey, B. & Ng, S. W. (2007a). Acta Cryst. E63, o1807–o1808.
  • Ali, H. M., Yusnita, J., Wan Jefrey, B. & Ng, S. W. (2007b). Acta Cryst. E63, o1621–o1622.
  • Ali, H. M., Yusnita, J., Wan Jefrey, B. & Ng, S. W. (2007c). Acta Cryst. E63, o3513.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Naumov, P., Anastasova, F., Drew, M. G. B. & Ng, S. W. (2000). Acta Cryst. C56, e406–e407.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography