PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o909.
Published online 2008 April 26. doi:  10.1107/S1600536808010933
PMCID: PMC2961181

N′-(3-Eth­oxy-2-hydroxy­benzyl­idene)-3-hydroxy­naphthalene-2-carbohydrazide

Abstract

In the mol­ecule of the title compound, C20H18N2O4, the dihedral angle between the benzene ring and the naphthyl ring system is 8.5 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H(...)O hydrogen bonds, forming chains running along the b axis.

Related literature

For background on Schiff base compounds and their biological applications, see: Schiff (1864 [triangle]); Brückner et al. (2000 [triangle]); Harrop et al. (2003 [triangle]); Ren et al. (2002 [triangle]). For related structures, see: Diao (2007 [triangle]); Diao et al. (2007 [triangle], 2008 [triangle]); Huang et al. (2007 [triangle]); Li et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o909-scheme1.jpg

Experimental

Crystal data

  • C20H18N2O4
  • M r = 350.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o909-efi1.jpg
  • a = 28.420 (15) Å
  • b = 6.456 (5) Å
  • c = 18.800 (14) Å
  • β = 100.658 (10)°
  • V = 3390 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.30 × 0.27 × 0.27 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.972, T max = 0.974
  • 13100 measured reflections
  • 3503 independent reflections
  • 2183 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.178
  • S = 1.06
  • 3503 reflections
  • 242 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010933/pv2080sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010933/pv2080Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Yun-Peng Diao for assistance with the experiment and structure refinement. The project was supported financially by Jilin Medical College.

supplementary crystallographic information

Comment

The compounds derived from the condensation reactions of aldehydes with primary amines are called Schiff base compounds (Schiff, 1864). Schiff base compounds and their metal complexes have attracted much interest for their wide applications, especially for their potential pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). In this paper, the preparation and crystal structure of the title compound, (I), is reported.

In the structure of (I) (Fig. 1), the naphthyl ring and 2-hydroxyphenyl methylidene hydrazide moiety are nearly coplanar with the dihedral angle between the phenyl ring and the naphthyl ring is 8.5 (2) °; the torsion angles C13—C12—N2—N1 and N2—N1—C11—C1 are 3.5 (2) and 1.4 (2)°, respectively. The methoxy group is slightly twisted out of the plane of the phenyl ring with torsion angle C15—O4—C19—C20 being 13.1 (2)°. The molecules of (I) are linked through intermolecular O–H···O hydrogen bonds, forming chains running along the b axis. The structure is further stabilized by intramolecular interactions N1—H1A···O1 and O3—H3···N2 (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987) and comparable to the values observed in other similar compounds (Diao et al., 2008; Diao et al., 2007; Diao, 2007; Li et al., 2007; Huang et al., 2007).

Experimental

3-Ethoxysalicylaldehyde (0.1 mmol, 16.6 mg) and 3-hydroxynaphthalene-2-carboxylic acid hydrazide (0.1 mmol, 20.2 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred at reflux for 1 h and cooled to room temperature. After keeping the solution in air for a few days, colorless block-like crystals were formed.

Refinement

H1A was located from a difference Fourier map and refined isotropically. The rest of the H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.97 Å, O–H distances of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl C).

Figures

Fig. 1.
The structure of (I) with displacement parameters drawn at the 30% probability level.
Fig. 2.
The molecular packing of (I) showing intermolecular hydrogen-bonds with dashed lines.

Crystal data

C20H18N2O4F000 = 1472
Mr = 350.36Dx = 1.373 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1359 reflections
a = 28.420 (15) Åθ = 2.2–24.3º
b = 6.456 (5) ŵ = 0.10 mm1
c = 18.800 (14) ÅT = 298 (2) K
β = 100.658 (10)ºBlock, colorless
V = 3390 (4) Å30.30 × 0.27 × 0.27 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer3503 independent reflections
Radiation source: fine-focus sealed tube2183 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.057
T = 298(2) Kθmax = 26.5º
ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −35→35
Tmin = 0.972, Tmax = 0.974k = −8→8
13100 measured reflectionsl = −23→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178  w = 1/[σ2(Fo2) + 0.1909P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3503 reflectionsΔρmax = 0.24 e Å3
242 parametersΔρmin = −0.19 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.00934 (6)−0.1963 (2)0.34159 (8)0.0489 (5)
H11.0059−0.32110.34700.073*
O20.98937 (6)0.4267 (2)0.38501 (9)0.0528 (5)
O30.88269 (7)0.6149 (3)0.24267 (9)0.0611 (6)
H30.90390.53980.26440.092*
O40.81068 (6)0.8088 (3)0.16639 (10)0.0592 (5)
N10.96591 (7)0.1590 (3)0.31039 (10)0.0396 (5)
N20.93488 (7)0.2841 (3)0.26466 (10)0.0394 (5)
C11.02434 (7)0.1001 (3)0.41996 (11)0.0336 (5)
C21.03361 (8)−0.1122 (3)0.40475 (11)0.0363 (5)
C31.06657 (8)−0.2231 (3)0.45120 (13)0.0405 (6)
H3A1.0734−0.35800.43900.049*
C41.09062 (8)−0.1396 (3)0.51714 (12)0.0377 (5)
C51.12406 (8)−0.2534 (4)0.56714 (14)0.0467 (6)
H51.1314−0.38880.55630.056*
C61.14561 (9)−0.1678 (4)0.63087 (14)0.0502 (6)
H61.1670−0.24650.66350.060*
C71.13609 (8)0.0384 (4)0.64834 (13)0.0498 (7)
H71.15160.09600.69170.060*
C81.10409 (8)0.1528 (4)0.60139 (12)0.0431 (6)
H81.09760.28820.61330.052*
C91.08064 (8)0.0685 (3)0.53476 (11)0.0364 (5)
C101.04759 (8)0.1814 (3)0.48433 (12)0.0372 (5)
H101.04120.31790.49520.045*
C110.99190 (8)0.2416 (3)0.37086 (12)0.0365 (5)
C120.91016 (8)0.2028 (4)0.20827 (12)0.0402 (6)
H120.91470.06430.19770.048*
C130.87471 (8)0.3253 (4)0.16007 (12)0.0392 (6)
C140.86145 (8)0.5211 (4)0.18082 (12)0.0426 (6)
C150.82336 (9)0.6255 (4)0.13816 (13)0.0471 (6)
C160.80210 (9)0.5426 (4)0.07255 (13)0.0562 (7)
H160.77760.61480.04310.067*
C170.81680 (9)0.3529 (4)0.04985 (14)0.0566 (7)
H170.80270.30010.00490.068*
C180.85201 (8)0.2431 (4)0.09359 (13)0.0465 (6)
H180.86090.11340.07910.056*
C190.76647 (9)0.9005 (4)0.13279 (16)0.0612 (8)
H19A0.74130.79710.12510.073*
H19B0.76940.95900.08630.073*
C200.75477 (11)1.0676 (4)0.18230 (17)0.0764 (9)
H20A0.74981.00670.22690.115*
H20B0.72621.13840.15970.115*
H20C0.78081.16430.19200.115*
H1A0.9661 (10)0.0234 (18)0.2992 (15)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0656 (11)0.0304 (9)0.0453 (10)0.0015 (8)−0.0038 (8)−0.0026 (7)
O20.0653 (12)0.0272 (9)0.0598 (11)0.0042 (8)−0.0043 (9)0.0031 (8)
O30.0697 (13)0.0505 (11)0.0525 (11)0.0209 (9)−0.0165 (9)−0.0120 (9)
O40.0558 (11)0.0509 (11)0.0628 (12)0.0186 (8)−0.0098 (9)−0.0038 (9)
N10.0435 (11)0.0338 (10)0.0395 (11)0.0055 (9)0.0022 (9)0.0036 (9)
N20.0412 (11)0.0362 (11)0.0388 (11)0.0058 (8)0.0020 (9)0.0052 (9)
C10.0351 (12)0.0299 (12)0.0364 (12)−0.0008 (9)0.0082 (10)0.0037 (9)
C20.0409 (13)0.0313 (12)0.0365 (12)−0.0030 (10)0.0066 (10)0.0005 (10)
C30.0442 (14)0.0308 (12)0.0473 (14)0.0021 (10)0.0105 (11)0.0017 (10)
C40.0351 (12)0.0369 (13)0.0422 (13)0.0013 (10)0.0099 (10)0.0020 (10)
C50.0451 (14)0.0446 (14)0.0514 (15)0.0114 (11)0.0114 (12)0.0047 (12)
C60.0422 (14)0.0616 (17)0.0448 (15)0.0093 (12)0.0029 (12)0.0051 (12)
C70.0435 (15)0.0634 (18)0.0410 (14)−0.0001 (12)0.0041 (12)−0.0010 (12)
C80.0463 (14)0.0407 (13)0.0430 (14)−0.0013 (11)0.0098 (11)−0.0030 (11)
C90.0369 (12)0.0394 (13)0.0342 (12)−0.0012 (10)0.0099 (10)0.0025 (10)
C100.0442 (13)0.0275 (11)0.0413 (13)−0.0002 (10)0.0113 (11)0.0009 (10)
C110.0379 (12)0.0312 (13)0.0407 (13)−0.0006 (10)0.0077 (10)0.0045 (10)
C120.0438 (14)0.0388 (13)0.0395 (13)0.0073 (10)0.0118 (11)−0.0009 (10)
C130.0394 (13)0.0432 (13)0.0357 (13)0.0042 (10)0.0086 (10)0.0016 (10)
C140.0427 (14)0.0478 (15)0.0349 (12)0.0048 (11)0.0009 (11)0.0013 (11)
C150.0449 (14)0.0476 (15)0.0469 (14)0.0064 (12)0.0032 (12)0.0020 (12)
C160.0531 (17)0.0645 (18)0.0455 (15)0.0097 (13)−0.0052 (12)0.0103 (13)
C170.0573 (17)0.0694 (19)0.0389 (14)0.0010 (14)−0.0023 (12)−0.0065 (13)
C180.0496 (15)0.0490 (15)0.0418 (14)0.0010 (12)0.0106 (12)−0.0036 (11)
C190.0419 (15)0.0561 (17)0.081 (2)0.0104 (12)−0.0009 (14)0.0025 (15)
C200.0619 (19)0.066 (2)0.101 (2)0.0174 (15)0.0127 (18)−0.0019 (18)

Geometric parameters (Å, °)

O1—C21.370 (3)C7—C81.362 (3)
O1—H10.8200C7—H70.9300
O2—C111.230 (3)C8—C91.414 (3)
O3—C141.350 (3)C8—H80.9300
O3—H30.8200C9—C101.408 (3)
O4—C151.372 (3)C10—H100.9300
O4—C191.426 (3)C12—C131.457 (3)
N1—C111.346 (3)C12—H120.9300
N1—N21.374 (2)C13—C141.395 (3)
N1—H1A0.900 (10)C13—C181.401 (3)
N2—C121.272 (3)C14—C151.396 (3)
C1—C101.371 (3)C15—C161.377 (3)
C1—C21.434 (3)C16—C171.387 (4)
C1—C111.490 (3)C16—H160.9300
C2—C31.360 (3)C17—C181.369 (3)
C3—C41.407 (3)C17—H170.9300
C3—H3A0.9300C18—H180.9300
C4—C51.413 (3)C19—C201.501 (4)
C4—C91.425 (3)C19—H19A0.9700
C5—C61.358 (3)C19—H19B0.9700
C5—H50.9300C20—H20A0.9600
C6—C71.409 (4)C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C2—O1—H1109.5O2—C11—N1121.5 (2)
C14—O3—H3109.5O2—C11—C1121.1 (2)
C15—O4—C19117.36 (19)N1—C11—C1117.43 (19)
C11—N1—N2118.96 (19)N2—C12—C13120.4 (2)
C11—N1—H1A123.8 (18)N2—C12—H12119.8
N2—N1—H1A117.1 (18)C13—C12—H12119.8
C12—N2—N1118.05 (19)C14—C13—C18119.3 (2)
C10—C1—C2117.73 (19)C14—C13—C12120.6 (2)
C10—C1—C11117.0 (2)C18—C13—C12120.0 (2)
C2—C1—C11125.3 (2)O3—C14—C13123.1 (2)
C3—C2—O1121.6 (2)O3—C14—C15117.0 (2)
C3—C2—C1120.3 (2)C13—C14—C15119.8 (2)
O1—C2—C1118.02 (19)O4—C15—C16125.3 (2)
C2—C3—C4121.9 (2)O4—C15—C14115.2 (2)
C2—C3—H3A119.0C16—C15—C14119.5 (2)
C4—C3—H3A119.0C15—C16—C17120.8 (2)
C3—C4—C5123.0 (2)C15—C16—H16119.6
C3—C4—C9118.7 (2)C17—C16—H16119.6
C5—C4—C9118.3 (2)C18—C17—C16120.0 (2)
C6—C5—C4120.9 (2)C18—C17—H17120.0
C6—C5—H5119.6C16—C17—H17120.0
C4—C5—H5119.6C17—C18—C13120.3 (2)
C5—C6—C7121.0 (2)C17—C18—H18119.8
C5—C6—H6119.5C13—C18—H18119.8
C7—C6—H6119.5O4—C19—C20107.5 (2)
C8—C7—C6119.7 (2)O4—C19—H19A110.2
C8—C7—H7120.2C20—C19—H19A110.2
C6—C7—H7120.2O4—C19—H19B110.2
C7—C8—C9120.9 (2)C20—C19—H19B110.2
C7—C8—H8119.5H19A—C19—H19B108.5
C9—C8—H8119.5C19—C20—H20A109.5
C10—C9—C8122.9 (2)C19—C20—H20B109.5
C10—C9—C4117.9 (2)H20A—C20—H20B109.5
C8—C9—C4119.2 (2)C19—C20—H20C109.5
C1—C10—C9123.3 (2)H20A—C20—H20C109.5
C1—C10—H10118.4H20B—C20—H20C109.5
C9—C10—H10118.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.872.661 (3)161
O3—H3···N20.821.872.589 (3)146
N1—H1A···O10.900 (10)1.95 (2)2.619 (3)130 (2)

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2080).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem.39, 6100–6106. [PubMed]
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Diao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.
  • Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.
  • Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101. [PMC free article] [PubMed]
  • Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411. [PubMed]
  • Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.
  • Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.
  • Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem.45, 410–419. [PubMed]
  • Schiff, H. (1864). Ann. Chem. Pharm.131, 118–124.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography