PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o879.
Published online 2008 April 23. doi:  10.1107/S1600536808010088
PMCID: PMC2961180

1-Allyl-3,3-di-p-tolyl­indolin-2-one

Abstract

In the title compound, C25H23NO, the indoline system is essentially planar. The mol­ecular structure is stabilized by weak intra­molecular C—H(...)N inter­actions and the crystal packing is determined by inter­molecular C—H(...)π inter­actions.

Related literature

For related literature, see: Harris & Uhle (1960 [triangle]); Ho et al. (1986 [triangle]); Rajeswaran et al. (1999 [triangle]); Stevenson et al. (2000 [triangle]); Sethusankar et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o879-scheme1.jpg

Experimental

Crystal data

  • C25H23NO
  • M r = 353.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o879-efi1.jpg
  • a = 9.3311 (2) Å
  • b = 9.5793 (2) Å
  • c = 11.5736 (2) Å
  • α = 92.163 (1)°
  • β = 103.192 (1)°
  • γ = 101.520 (1)°
  • V = 983.15 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 (2) K
  • 0.26 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.982, T max = 0.986
  • 25969 measured reflections
  • 6260 independent reflections
  • 4310 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.156
  • S = 0.99
  • 6260 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010088/gw2036sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010088/gw2036Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN thanks SRM management for their support.

supplementary crystallographic information

Comment

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). Indoles have also been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). In view of this biological importance, an X-ray study of the title compound, (I), was carried out.

An ORTEP (Farrugia,1997) plot of the molecular is shown in Fig.1. The indole moiety is planar [maximum deviation of 0.038 (1) from the least square plane defined by all non hydrogen atoms in the molecule] and is nearly orthogonal to methylphenyl rings A and B, and makes a dihedral angle of 72.3 (4)° with the ring A, 76.7 (3)° with the ring B. Both the p-tolyl rings A and B are oriented at an angle of 72.6 (4)° with respect to each other. The sum of angles around N1 [360.0]° is in accordance with sp2 hybridization. The endocyclic angles around C4 is narrowed while those at C9 is widened from 120°. This may be caused by fusion of the smaller pyrrole ring to the six membered benzene ring of oxindole. A similar effect has also been observed by Sethu Sankar et al. (2002). The bond lengths in the oxindole ring systems indicate electron delocalization. The torsion angles C19—C16—C15—C14 [–179.5 (2)°], C19—C16—C17—C18 [179.7 (2)°] and C26—C23—C24—C25 [–179.6 (2)°], C26—C23—C22—C21 [179.8 (2)°] indicates that the methyl groups are coplanar with the plane of the attached benzene rings A and B. The allyl group deviates significantly from the plane of the indole moiety [C12—C11—C10—N1 = – 4.5 (3)°].

Weak intramolecular C—H···N and intermolecular C—H··· Cg interactions, with C5···Cg = 3.740 (2) Å, [Cg denotes centroid of C20—C25 ring] are observed in the molecular structure. In addition the packing is stabilized by van der Waals forces.

Experimental

To a solution of p-methyl phenyl magnesium bromide in dry THF, at 0°C under N2 atm.,1-N-allyl isatin (0.0125 mol, 2.34 g), in dry THF, was added dropwise. After the complete addition, the mixture was stirred at 0°C for 1 hr and then it was stirred at room temperature for 5 hrs. On completion of the reaction, a saturated solution of NH4Cl was added slowly at 0°C. The aqueous layer was extracted with ether, and the combined organic layer was extracted with ether. The crude mass was obtained., which was purified over a column of silica gel using hexane/ethyl acetate as eluent. Compound was recrystallized from methanol.

Refinement

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å and methylene C—H distances of 0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids
Fig. 2.
The packing of the molecules viewed down b axis.

Crystal data

C25H23NOZ = 2
Mr = 353.44F000 = 376
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.3311 (2) ÅCell parameters from 9112 reflections
b = 9.5793 (2) Åθ = 2.3–30.1º
c = 11.5736 (2) ŵ = 0.07 mm1
α = 92.1630 (10)ºT = 293 (2) K
β = 103.1920 (10)ºPrism, colourless
γ = 101.5200 (10)º0.26 × 0.20 × 0.20 mm
V = 983.15 (3) Å3

Data collection

Bruker Kappa APEXII diffractometer6260 independent reflections
Radiation source: fine-focus sealed tube4310 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 293(2) Kθmax = 31.0º
ω and [var phi] scanθmin = 2.2º
Absorption correction: multi-scan(Blessing, 1995)h = −13→13
Tmin = 0.982, Tmax = 0.986k = −13→13
25969 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.156  w = 1/[σ2(Fo2) + (0.0731P)2 + 0.1889P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6260 reflectionsΔρmax = 0.25 e Å3
244 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.21981 (13)0.10769 (13)0.14416 (10)0.0403 (2)
C30.29661 (11)0.03653 (12)0.25302 (9)0.0361 (2)
C40.45434 (12)0.05217 (12)0.23447 (10)0.0391 (2)
C50.57669 (13)0.00390 (15)0.29710 (12)0.0497 (3)
H50.5699−0.04780.36280.060*
C60.71037 (15)0.03411 (17)0.26019 (15)0.0602 (4)
H60.79380.00240.30180.072*
C70.72086 (16)0.10999 (18)0.16332 (16)0.0629 (4)
H70.81160.12950.14050.075*
C80.59809 (17)0.15830 (17)0.09859 (14)0.0587 (4)
H80.60490.20960.03270.070*
C90.46580 (14)0.12724 (13)0.13582 (11)0.0443 (3)
C100.29599 (19)0.24323 (18)−0.01709 (12)0.0614 (4)
H10A0.19170.2102−0.06040.074*
H10B0.35890.2267−0.07010.074*
C110.32409 (19)0.39967 (19)0.01642 (16)0.0658 (4)
H110.31330.4583−0.04580.079*
C120.3620 (2)0.4623 (2)0.12318 (19)0.0749 (5)
H12A0.37420.40840.18850.090*
H12B0.37700.56120.13470.090*
C130.22090 (12)−0.12027 (12)0.25034 (10)0.0391 (2)
C140.24490 (16)−0.19198 (15)0.35239 (13)0.0541 (3)
H140.3029−0.14230.42370.065*
C150.18392 (18)−0.33608 (16)0.34970 (16)0.0626 (4)
H150.2020−0.38180.41940.075*
C160.09700 (17)−0.41371 (15)0.24620 (16)0.0592 (4)
C170.07309 (17)−0.34194 (16)0.14492 (15)0.0603 (4)
H170.0145−0.39200.07390.072*
C180.13362 (15)−0.19778 (14)0.14583 (12)0.0490 (3)
H180.1156−0.15260.07590.059*
C190.0294 (3)−0.57073 (17)0.2435 (2)0.0907 (6)
H19A−0.0262−0.60640.16390.136*
H19B−0.0372−0.58420.29630.136*
H19C0.1083−0.62160.26860.136*
C200.28928 (12)0.12652 (12)0.36267 (10)0.0372 (2)
C210.40937 (13)0.23204 (14)0.42458 (11)0.0445 (3)
H210.50030.24670.40200.053*
C220.39541 (16)0.31600 (15)0.51984 (12)0.0530 (3)
H220.47780.38580.56050.064*
C230.26275 (17)0.29871 (17)0.55575 (12)0.0553 (3)
C240.14184 (16)0.19372 (17)0.49283 (13)0.0561 (3)
H240.05060.18010.51500.067*
C250.15471 (14)0.10923 (15)0.39803 (12)0.0483 (3)
H250.07210.03980.35730.058*
C260.2485 (3)0.3901 (3)0.65992 (18)0.0932 (7)
H26A0.14850.36260.67180.140*
H26B0.26750.48890.64390.140*
H26C0.32040.37710.73040.140*
N10.32609 (13)0.15965 (12)0.08421 (9)0.0484 (3)
O10.08971 (10)0.11949 (10)0.11825 (8)0.0515 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0417 (5)0.0399 (6)0.0385 (5)0.0124 (4)0.0053 (4)0.0024 (4)
C30.0306 (5)0.0386 (6)0.0381 (5)0.0075 (4)0.0059 (4)0.0061 (4)
C40.0342 (5)0.0399 (6)0.0429 (6)0.0077 (4)0.0094 (4)0.0027 (4)
C50.0372 (6)0.0554 (8)0.0569 (7)0.0132 (5)0.0086 (5)0.0103 (6)
C60.0364 (6)0.0650 (9)0.0805 (10)0.0145 (6)0.0135 (6)0.0057 (8)
C70.0444 (7)0.0637 (9)0.0859 (11)0.0079 (6)0.0305 (7)0.0025 (8)
C80.0586 (8)0.0602 (9)0.0656 (9)0.0114 (7)0.0317 (7)0.0128 (7)
C90.0444 (6)0.0442 (6)0.0468 (6)0.0109 (5)0.0148 (5)0.0051 (5)
C100.0757 (10)0.0732 (10)0.0455 (7)0.0298 (8)0.0202 (7)0.0229 (7)
C110.0697 (9)0.0666 (10)0.0719 (10)0.0222 (8)0.0280 (8)0.0323 (8)
C120.0729 (11)0.0612 (10)0.0954 (13)0.0132 (8)0.0299 (10)0.0153 (9)
C130.0318 (5)0.0389 (6)0.0461 (6)0.0085 (4)0.0074 (4)0.0048 (5)
C140.0522 (7)0.0470 (7)0.0556 (7)0.0060 (6)0.0005 (6)0.0122 (6)
C150.0626 (9)0.0476 (8)0.0785 (10)0.0132 (6)0.0152 (7)0.0224 (7)
C160.0542 (7)0.0368 (7)0.0920 (11)0.0108 (6)0.0280 (7)0.0023 (7)
C170.0582 (8)0.0462 (8)0.0716 (9)0.0058 (6)0.0133 (7)−0.0137 (7)
C180.0499 (7)0.0470 (7)0.0480 (6)0.0096 (5)0.0092 (5)−0.0022 (5)
C190.0989 (14)0.0380 (8)0.1420 (19)0.0073 (8)0.0500 (14)0.0009 (10)
C200.0339 (5)0.0404 (6)0.0373 (5)0.0077 (4)0.0078 (4)0.0079 (4)
C210.0372 (5)0.0475 (7)0.0461 (6)0.0038 (5)0.0097 (5)0.0032 (5)
C220.0521 (7)0.0519 (8)0.0491 (7)0.0055 (6)0.0063 (6)−0.0046 (6)
C230.0607 (8)0.0625 (9)0.0456 (7)0.0186 (7)0.0145 (6)0.0007 (6)
C240.0486 (7)0.0701 (9)0.0558 (7)0.0148 (6)0.0229 (6)0.0056 (7)
C250.0361 (5)0.0550 (7)0.0522 (7)0.0046 (5)0.0121 (5)0.0027 (6)
C260.0965 (14)0.1150 (17)0.0707 (11)0.0262 (12)0.0279 (10)−0.0268 (11)
N10.0520 (6)0.0551 (6)0.0434 (5)0.0188 (5)0.0140 (5)0.0154 (5)
O10.0433 (4)0.0595 (6)0.0515 (5)0.0207 (4)0.0023 (4)0.0074 (4)

Geometric parameters (Å, °)

C2—O11.2114 (14)C14—C151.380 (2)
C2—N11.3621 (16)C14—H140.9300
C2—C31.5535 (15)C15—C161.376 (2)
C3—C41.5143 (15)C15—H150.9300
C3—C131.5228 (16)C16—C171.378 (2)
C3—C201.5294 (16)C16—C191.507 (2)
C4—C51.3788 (16)C17—C181.382 (2)
C4—C91.3853 (17)C17—H170.9300
C5—C61.3895 (19)C18—H180.9300
C5—H50.9300C19—H19A0.9600
C6—C71.371 (2)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C7—C81.391 (2)C20—C211.3847 (16)
C7—H70.9300C20—C251.3885 (16)
C8—C91.3798 (19)C21—C221.3857 (19)
C8—H80.9300C21—H210.9300
C9—N11.4046 (16)C22—C231.375 (2)
C10—N11.4508 (16)C22—H220.9300
C10—C111.489 (2)C23—C241.390 (2)
C10—H10A0.9700C23—C261.509 (2)
C10—H10B0.9700C24—C251.380 (2)
C11—C121.293 (3)C24—H240.9300
C11—H110.9300C25—H250.9300
C12—H12A0.9300C26—H26A0.9600
C12—H12B0.9300C26—H26B0.9600
C13—C181.3852 (17)C26—H26C0.9600
C13—C141.3853 (17)
O1—C2—N1125.45 (11)C16—C15—C14121.51 (14)
O1—C2—C3126.57 (11)C16—C15—H15119.2
N1—C2—C3107.95 (9)C14—C15—H15119.2
C4—C3—C13111.14 (9)C15—C16—C17117.38 (13)
C4—C3—C20113.55 (9)C15—C16—C19121.49 (17)
C13—C3—C20112.94 (9)C17—C16—C19121.13 (17)
C4—C3—C2101.28 (9)C16—C17—C18121.93 (14)
C13—C3—C2111.74 (9)C16—C17—H17119.0
C20—C3—C2105.46 (9)C18—C17—H17119.0
C5—C4—C9119.89 (11)C17—C18—C13120.39 (13)
C5—C4—C3130.70 (11)C17—C18—H18119.8
C9—C4—C3109.40 (9)C13—C18—H18119.8
C4—C5—C6118.68 (13)C16—C19—H19A109.5
C4—C5—H5120.7C16—C19—H19B109.5
C6—C5—H5120.7H19A—C19—H19B109.5
C7—C6—C5120.88 (13)C16—C19—H19C109.5
C7—C6—H6119.6H19A—C19—H19C109.5
C5—C6—H6119.6H19B—C19—H19C109.5
C6—C7—C8121.13 (13)C21—C20—C25117.95 (11)
C6—C7—H7119.4C21—C20—C3122.56 (10)
C8—C7—H7119.4C25—C20—C3119.36 (10)
C9—C8—C7117.48 (14)C20—C21—C22120.67 (12)
C9—C8—H8121.3C20—C21—H21119.7
C7—C8—H8121.3C22—C21—H21119.7
C8—C9—C4121.93 (12)C23—C22—C21121.62 (13)
C8—C9—N1128.51 (12)C23—C22—H22119.2
C4—C9—N1109.54 (10)C21—C22—H22119.2
N1—C10—C11113.55 (13)C22—C23—C24117.66 (13)
N1—C10—H10A108.9C22—C23—C26121.35 (15)
C11—C10—H10A108.9C24—C23—C26120.99 (15)
N1—C10—H10B108.9C25—C24—C23121.17 (13)
C11—C10—H10B108.9C25—C24—H24119.4
H10A—C10—H10B107.7C23—C24—H24119.4
C12—C11—C10126.66 (15)C24—C25—C20120.91 (12)
C12—C11—H11116.7C24—C25—H25119.5
C10—C11—H11116.7C20—C25—H25119.5
C11—C12—H12A120.0C23—C26—H26A109.5
C11—C12—H12B120.0C23—C26—H26B109.5
H12A—C12—H12B120.0H26A—C26—H26B109.5
C18—C13—C14117.85 (12)C23—C26—H26C109.5
C18—C13—C3121.72 (11)H26A—C26—H26C109.5
C14—C13—C3120.33 (10)H26B—C26—H26C109.5
C15—C14—C13120.95 (13)C2—N1—C9111.71 (10)
C15—C14—H14119.5C2—N1—C10122.67 (11)
C13—C14—H14119.5C9—N1—C10125.57 (12)
O1—C2—C3—C4178.68 (12)C14—C15—C16—C170.0 (2)
N1—C2—C3—C4−3.41 (12)C14—C15—C16—C19−179.48 (16)
O1—C2—C3—C1360.29 (16)C15—C16—C17—C180.2 (2)
N1—C2—C3—C13−121.80 (11)C19—C16—C17—C18179.68 (15)
O1—C2—C3—C20−62.78 (15)C16—C17—C18—C13−0.2 (2)
N1—C2—C3—C20115.14 (10)C14—C13—C18—C170.1 (2)
C13—C3—C4—C5−57.30 (16)C3—C13—C18—C17176.45 (12)
C20—C3—C4—C571.33 (16)C4—C3—C20—C2111.87 (15)
C2—C3—C4—C5−176.12 (13)C13—C3—C20—C21139.58 (11)
C13—C3—C4—C9121.92 (11)C2—C3—C20—C21−98.13 (12)
C20—C3—C4—C9−109.45 (11)C4—C3—C20—C25−172.36 (10)
C2—C3—C4—C93.10 (12)C13—C3—C20—C25−44.66 (14)
C9—C4—C5—C61.0 (2)C2—C3—C20—C2577.64 (13)
C3—C4—C5—C6−179.88 (12)C25—C20—C21—C220.88 (18)
C4—C5—C6—C7−0.2 (2)C3—C20—C21—C22176.71 (11)
C5—C6—C7—C8−0.4 (2)C20—C21—C22—C23−0.5 (2)
C6—C7—C8—C90.2 (2)C21—C22—C23—C24−0.2 (2)
C7—C8—C9—C40.7 (2)C21—C22—C23—C26179.75 (16)
C7—C8—C9—N1−177.86 (14)C22—C23—C24—C250.4 (2)
C5—C4—C9—C8−1.2 (2)C26—C23—C24—C25−179.55 (16)
C3—C4—C9—C8179.45 (12)C23—C24—C25—C200.1 (2)
C5—C4—C9—N1177.52 (12)C21—C20—C25—C24−0.69 (19)
C3—C4—C9—N1−1.79 (14)C3—C20—C25—C24−176.65 (12)
N1—C10—C11—C12−4.5 (3)O1—C2—N1—C9−179.43 (12)
C4—C3—C13—C18−91.47 (13)C3—C2—N1—C92.63 (14)
C20—C3—C13—C18139.57 (11)O1—C2—N1—C103.1 (2)
C2—C3—C13—C1820.86 (15)C3—C2—N1—C10−174.88 (12)
C4—C3—C13—C1484.82 (14)C8—C9—N1—C2178.07 (13)
C20—C3—C13—C14−44.14 (14)C4—C9—N1—C2−0.58 (15)
C2—C3—C13—C14−162.84 (11)C8—C9—N1—C10−4.5 (2)
C18—C13—C14—C150.1 (2)C4—C9—N1—C10176.83 (13)
C3—C13—C14—C15−176.30 (13)C11—C10—N1—C288.62 (17)
C13—C14—C15—C16−0.2 (2)C11—C10—N1—C9−88.53 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···Cgi0.932.943.740 (2)145
C12—H12A···N10.932.542.858 (2)100

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2036).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther.128, 353–363.
  • Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem.29, 118–121.
  • Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem.64, 1369–1371.
  • Sethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. C58, o277–o279. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett.10, 2697–2704. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography