PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o918.
Published online 2008 April 26. doi:  10.1107/S160053680801101X
PMCID: PMC2961179

5-Bromo-1H-indole-3-carbaldehyde thio­semicarbazone

Abstract

In the essentially planar title mol­ecule, C10H9BrN4S, the C=N double bond is in a trans configuration. In the crystal structure, the S atom acts as a hydrogen-bond acceptor for the aromatic NH, aliphatic NH and terminal NH2 groups of three symmetry-related mol­ecules, forming a weak hydrogen-bonded layer structure.

Related literature

For a previous synthesis of the title compound, see: Dubey & Babu (2006 [triangle]). For related literature, see: Doyle et al. (1956 [triangle]); French & Blanz (1966 [triangle]); Fukukawa et al. (1966 [triangle]); Libermann et al. (1953 [triangle]); Usi (1968 [triangle]); Weller et al. (1954 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o918-scheme1.jpg

Experimental

Crystal data

  • C10H9BrN4S
  • M r = 297.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o918-efi1.jpg
  • a = 6.7731 (2) Å
  • b = 8.7551 (2) Å
  • c = 10.6539 (2) Å
  • α = 69.280 (1)°
  • β = 79.969 (1)°
  • γ = 72.886 (1)°
  • V = 563.00 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.81 mm−1
  • T = 100 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.381, T max = 0.516 (expected range = 0.344–0.467)
  • 6176 measured reflections
  • 2563 independent reflections
  • 2281 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.066
  • S = 1.06
  • 2563 reflections
  • 161 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801101X/lh2609sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801101X/lh2609Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Science Fund (12–02-03–2031) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Indole-3-carboxaldehyde thiosemicarbazone and its substituted analogs possess useful medicinal properties; such activity has been known for a long time (Doyle et al., 1956; French & Blanz, 1966; Fukukawa et al., 1966; Libermann et al., 1953; Usi, 1968; Weller et al., 1954). The compounds, in the form of their metal derivatives, have been assesses for similar activity.

In the title compound (I) (Fig. 1), the double-bonded sulfur atom is a hydrogen-bond acceptor for the aromatic -N-H, aliphatic -N-H and terminal -NH2 groups of three adjacent molecules, forming a weak hydrogen-bonded layer structure.

Experimental

5-Bromoindole-3-carboxaldehyde (0.3 g, 1.3 mmol) and thiosemicarbazide (0.12 g, 1.3 mmol) were heated in ethanol (50 ml) for an hour. The solvent was removed and the product and recrystallized from ethanol.

Refinement

Carbon-bound H atoms were placed in calculated positions, and were included in the refinement in the riding model approximation. The nitrogen-bound H atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were freely refined.

Figures

Fig. 1.
The title molecule drawn using 70% probabilty ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C10H9BrN4SZ = 2
Mr = 297.18F000 = 296
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.7731 (2) ÅCell parameters from 6604 reflections
b = 8.7551 (2) Åθ = 4.0–28.3º
c = 10.6539 (2) ŵ = 3.81 mm1
α = 69.280 (1)ºT = 100 (2) K
β = 79.969 (1)ºBlock, yellow
γ = 72.886 (1)º0.30 × 0.20 × 0.20 mm
V = 563.00 (2) Å3

Data collection

Bruker SMART APEX diffractometer2563 independent reflections
Radiation source: fine-focus sealed tube2281 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 100(2) Kθmax = 27.5º
ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→8
Tmin = 0.381, Tmax = 0.516k = −11→11
6176 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066  w = 1/[σ2(Fo2) + (0.0383P)2 + 0.1P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2563 reflectionsΔρmax = 0.36 e Å3
161 parametersΔρmin = −0.40 e Å3
4 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.51693 (4)0.13022 (2)0.31237 (2)0.02102 (9)
S10.01187 (9)0.22591 (6)1.06142 (5)0.01534 (12)
N10.2717 (3)0.8577 (2)0.27383 (17)0.0153 (4)
N20.1383 (3)0.4698 (2)0.68281 (16)0.0116 (3)
N30.0718 (3)0.4342 (2)0.81750 (16)0.0118 (3)
N40.1492 (3)0.1567 (2)0.83268 (18)0.0169 (4)
C10.1846 (3)0.8475 (3)0.4006 (2)0.0151 (4)
H10.12660.94150.43200.018*
C20.3383 (3)0.6981 (2)0.2626 (2)0.0122 (4)
C30.4355 (3)0.6471 (3)0.1529 (2)0.0142 (4)
H30.46410.72650.06870.017*
C40.4889 (3)0.4765 (3)0.1711 (2)0.0131 (4)
H40.55730.43590.09900.016*
C50.4422 (3)0.3633 (2)0.2960 (2)0.0127 (4)
C60.3464 (3)0.4108 (2)0.40581 (19)0.0118 (4)
H60.31840.33000.48930.014*
C70.2917 (3)0.5832 (2)0.38933 (19)0.0109 (4)
C80.1921 (3)0.6825 (2)0.4770 (2)0.0120 (4)
C90.1249 (3)0.6266 (2)0.6176 (2)0.0127 (4)
H90.06930.70740.66330.015*
C100.0822 (3)0.2737 (2)0.8937 (2)0.0123 (4)
H1N0.254 (5)0.953 (2)0.207 (2)0.028 (7)*
H3N0.037 (4)0.510 (2)0.858 (2)0.013 (6)*
H4N10.137 (4)0.0533 (17)0.876 (2)0.023 (7)*
H4N20.173 (5)0.190 (4)0.7452 (11)0.035 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02971 (15)0.01243 (12)0.02039 (12)−0.00512 (9)0.00410 (9)−0.00765 (8)
S10.0217 (3)0.0111 (2)0.0101 (2)−0.0029 (2)0.00152 (19)−0.00200 (18)
N10.0190 (10)0.0104 (8)0.0119 (8)−0.0022 (7)0.0015 (7)−0.0005 (6)
N20.0105 (8)0.0144 (8)0.0100 (8)−0.0056 (6)0.0021 (6)−0.0034 (6)
N30.0154 (9)0.0112 (8)0.0091 (7)−0.0032 (7)0.0020 (6)−0.0051 (6)
N40.0239 (10)0.0117 (8)0.0144 (8)−0.0050 (7)0.0044 (7)−0.0056 (7)
C10.0176 (11)0.0133 (9)0.0127 (9)−0.0021 (8)0.0005 (8)−0.0045 (8)
C20.0120 (10)0.0108 (9)0.0134 (9)−0.0032 (7)−0.0023 (8)−0.0025 (7)
C30.0121 (10)0.0167 (10)0.0119 (9)−0.0036 (8)−0.0015 (8)−0.0022 (7)
C40.0109 (10)0.0174 (10)0.0111 (9)−0.0028 (8)−0.0020 (7)−0.0049 (7)
C50.0113 (10)0.0106 (9)0.0165 (9)−0.0031 (7)−0.0014 (8)−0.0042 (7)
C60.0102 (10)0.0124 (9)0.0117 (9)−0.0030 (7)−0.0017 (7)−0.0021 (7)
C70.0090 (10)0.0132 (9)0.0103 (9)−0.0028 (7)−0.0012 (7)−0.0032 (7)
C80.0114 (10)0.0116 (9)0.0131 (9)−0.0035 (8)−0.0011 (7)−0.0037 (7)
C90.0107 (10)0.0137 (9)0.0133 (9)−0.0024 (8)−0.0003 (8)−0.0049 (7)
C100.0103 (10)0.0129 (9)0.0130 (9)−0.0029 (7)0.0001 (7)−0.0038 (7)

Geometric parameters (Å, °)

Br1—C51.9032 (19)C1—H10.9500
S1—C101.699 (2)C2—C31.388 (3)
N1—C11.359 (3)C2—C71.418 (3)
N1—C21.378 (3)C3—C41.379 (3)
N1—H1N0.878 (10)C3—H30.9500
N2—C91.284 (3)C4—C51.399 (3)
N2—N31.378 (2)C4—H40.9500
N3—C101.339 (3)C5—C61.372 (3)
N3—H3N0.876 (10)C6—C71.398 (3)
N4—C101.331 (3)C6—H60.9500
N4—H4N10.880 (10)C7—C81.447 (3)
N4—H4N20.873 (10)C8—C91.437 (3)
C1—C81.376 (3)C9—H90.9500
C1—N1—C2109.25 (17)C3—C4—H4120.1
C1—N1—H1N122.5 (19)C5—C4—H4120.1
C2—N1—H1N126.2 (18)C6—C5—C4123.94 (18)
C9—N2—N3115.12 (17)C6—C5—Br1118.76 (15)
C10—N3—N2119.25 (16)C4—C5—Br1117.30 (15)
C10—N3—H3N117.5 (16)C5—C6—C7117.04 (18)
N2—N3—H3N122.8 (16)C5—C6—H6121.5
C10—N4—H4N1119.9 (17)C7—C6—H6121.5
C10—N4—H4N2118.1 (19)C6—C7—C2119.09 (17)
H4N1—N4—H4N2120 (3)C6—C7—C8134.17 (18)
N1—C1—C8110.69 (18)C2—C7—C8106.75 (17)
N1—C1—H1124.7C1—C8—C9124.92 (18)
C8—C1—H1124.7C1—C8—C7105.86 (17)
N1—C2—C3129.70 (18)C9—C8—C7129.10 (18)
N1—C2—C7107.45 (17)N2—C9—C8121.41 (18)
C3—C2—C7122.85 (18)N2—C9—H9119.3
C4—C3—C2117.27 (18)C8—C9—H9119.3
C4—C3—H3121.4N4—C10—N3117.36 (18)
C2—C3—H3121.4N4—C10—S1122.58 (16)
C3—C4—C5119.81 (18)N3—C10—S1120.06 (15)
C9—N2—N3—C10−179.30 (19)C3—C2—C7—C60.3 (3)
C2—N1—C1—C80.5 (3)N1—C2—C7—C80.4 (2)
C1—N1—C2—C3180.0 (2)C3—C2—C7—C8179.9 (2)
C1—N1—C2—C7−0.6 (2)N1—C1—C8—C9176.0 (2)
N1—C2—C3—C4178.9 (2)N1—C1—C8—C7−0.2 (3)
C7—C2—C3—C4−0.6 (3)C6—C7—C8—C1179.4 (2)
C2—C3—C4—C50.8 (3)C2—C7—C8—C1−0.2 (2)
C3—C4—C5—C6−0.8 (3)C6—C7—C8—C93.4 (4)
C3—C4—C5—Br1179.01 (16)C2—C7—C8—C9−176.2 (2)
C4—C5—C6—C70.6 (3)N3—N2—C9—C8178.80 (19)
Br1—C5—C6—C7−179.25 (15)C1—C8—C9—N2−179.4 (2)
C5—C6—C7—C2−0.3 (3)C7—C8—C9—N2−4.0 (4)
C5—C6—C7—C8−179.8 (2)N2—N3—C10—N4−2.8 (3)
N1—C2—C7—C6−179.18 (18)N2—N3—C10—S1177.10 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···S1i0.88 (1)2.60 (2)3.390 (2)150 (3)
N3—H3n···S1ii0.88 (1)2.65 (1)3.508 (2)167 (2)
N4—H4n1···S1iii0.88 (1)2.74 (1)3.569 (2)158 (2)

Symmetry codes: (i) x, y+1, z−1; (ii) −x, −y+1, −z+2; (iii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2609).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Doyle, F. P., Ferrier, W., Holland, D. O., Mehta, M. D. & Nayler, J. H. C. (1956). J. Chem. Soc. pp. 2853–2857.
  • Dubey, P. K. & Babu, B. (2006). Ind. J. Heterocycl. Chem.15, 209–219.
  • French, F. A. & Blanz, E. J. (1966). J. Med. Chem.9, 585–589. [PubMed]
  • Fukukawa, F., Isao, Y., Seno, T., Sasaki, M., Naito, M. & Shunji, T. (1966). Yakaguka Zasshi, 86, 801–804.
  • Libermann, D., Moyeux, M., Rouaix, A., Maillard, J., Hengl, L., Himbert, J. & Theraplix, M. (1953). Bull. Soc. Chim. Fr. pp. 957–962.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Usi, Y. (1968). Ann. Rep. Takeda Res. Lab.27, 144–158.
  • Weller, L. E., Sell, H. M. & Gotshall, R. Y. (1954). J. Am. Chem. Soc.76, 1959.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography