PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o774–o775.
Published online 2008 April 2. doi:  10.1107/S1600536808007587
PMCID: PMC2961178

Dicyclo­hexyl­ammonium 2-methoxy­benzoate

Abstract

The asymmetric unit of the title compound, C12H24N+·C8H7O3 , contains one dicyclo­hexyl­ammonium cation and one 2-methoxy­benzoate anion. Two cations and two anions are linked together to form a four-ion cluster through a set of N—H(...)O hydrogen bonds. Weak C—H(...)O hydrogen bonds connect the clusters into chains that are stacked along the crystallographic c axis.

Related literature

For the crystal structures of dicyclo­hexyl­ammonium salts of monocarboxylic acids, see: Ng et al. (1999 [triangle]); Ng, Naumov et al. 2001 [triangle]), Ng & Hook (1999 [triangle]); Subramanian et al. (2000 [triangle]). For the crystal structures of dicyclo­hexyl­ammonium salts of dicarboxylic acids, see: Ballabh et al. (2005 [triangle]); Trivedi et al. (2005 [triangle]); Ng, Chantrapromma et al. (2001 [triangle]). For related literature, see: Zain & Ng (2007 [triangle]); Trivedi et al. (2004 [triangle]); Ng et al. (1991 [triangle]); Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o774-scheme1.jpg

Experimental

Crystal data

  • C12H24N+·C8H7O3
  • M r = 333.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o774-efi1.jpg
  • a = 9.2798 (5) Å
  • b = 17.7978 (9) Å
  • c = 12.1513 (7) Å
  • β = 104.720 (5)°
  • V = 1941.04 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (1) K
  • 0.62 × 0.41 × 0.35 mm

Data collection

  • Oxford Diffraction Xcalibur CCD diffractometer
  • Absorption correction: none
  • 19673 measured reflections
  • 3789 independent reflections
  • 2750 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.175
  • S = 1.03
  • 3789 reflections
  • 225 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]), Mercury (Macrae et al., 2006 [triangle]), RasTop (Valadon, 2000–2003 [triangle]) and POV-RAY (Persistence of Vision, 2004 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808007587/wn2244sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007587/wn2244Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the Ministry of Science, Education and Sport of the Republic of Croatia is gratefully acknowledged (grant Nos. 098–0982914-2935 and 119–1193079-1084).

supplementary crystallographic information

Comment

The title compound was synthesized as a model for the purposes of a workshop on parallel synthesis and combinatorial chemistry. The compound was selected because of its resemblance to dicyclohexylammonium salts of substituted cinnamic acids, that are widely known as gelators of organic fluids (Ballabh et al., 2005; Trivedi et al., 2005, Trivedi et al., 2004).

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit consist of a dicyclohexylammonium cation and a 2-methoxybenzoate anion. The carboxylate group of the anion is twisted with respect to the parent benzene ring by 65.1 (2)°. All bond lengths fall within normal ranges (Allen et al., 1987).

Two cations and two anions self-assemble into a tetrameric structural unit by two hydrogen bonds; N1—H2···O1 and N1—H1···O2i (Fig. 2, Table 1.).

Weak C20—H20···O1ii hydrogen bonds (Fig. 3, Table 1) link these tetrameric units into chains that are stacked together in a zipper-like manner, so as to produce narrow channels between them (Fig. 4a). The appearance of the channels is consistent with the relatively low calculated density of the title compound (1.14 g cm-3).

The zipper-like stacking is achieved by the interdigitation of protruding benzene groups in each chain (Fig. 4 b), thus maximizing the intermolecular contacts.

Experimental

A solution of dicyclohexylamine (363 mg, 2.00 mmol) in toluene (5 ml) was added with stirring to a solution of 2-methoxybenzoic acid (304 mg, 2.00 mmol) in toluene (5 ml). The resulting solution was allowed to stand in an open beaker for several days until crystals of the title compound formed by slow solvent evaporation. The crystals were suitable for single-crystal X-ray diffraction. The compound was also analyzed by thermal methods (TG and DSC). Thermal analyses were performed on METTLER thermal analysis modules DSC823e and TGA/SDTA851e. The calorimetric thermogram exhibited one endothermic signal that was sharp and well defined, corresponding to the melting point of the compound. The onset temperature of the signal is Tf = 416 K with enthalpy of fusion, ΔHfus = 37,9 kJ mol-1. Degradation of the sample begins above 524 K.

Refinement

Carbon-bound H atoms were placed in calculated positions and included in the refinement using the riding-model approximation, with C—H distances of 0.93 Å for phenyl, 0.97 Å for methylene, 0.98 Å for methine and 0.96 Å for methyl groups, and with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl). A rotating group model was used for the methyl groups. The hydrogen atoms of the amine group were located in the final Fourier difference map and their coordinates were blocked during the refinement process.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
Self-assembly of cations and anions through N1—H2···O1 and N1—H1···O2 hydrogen bonds into tetrameric units.
Fig. 3.
Linkage of the tetrameric units into molecular chains through weak C20—H20···O1 hydrogen bonds. Carbon atoms C20 involved in hydrogen bonding are darkened for clarity.
Fig. 4.
Views of the crystal structure of the title compound depicting: (a) the narrow channels between neighboring chains of tetrameric units; (b) the interpenetration of benzene rings belonging to neighboring chains. Atoms of each chain have been color-coded ...

Crystal data

C12H24N+·C8H7O3Dx = 1.141 Mg m3
Mr = 333.46Melting point: 416 K
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 742 reflections
a = 9.2798 (5) Åθ = 6.4–21.2º
b = 17.7978 (9) ŵ = 0.08 mm1
c = 12.1513 (7) ÅT = 293 (1) K
β = 104.720 (5)ºCell measurement pressure: 101(1) kPa
V = 1941.04 (18) Å3Prismatic, colourless
Z = 40.62 × 0.41 × 0.35 mm
F000 = 728

Data collection

Oxford Diffraction Xcalibur CCD diffractometer3789 independent reflections
Radiation source: fine-focus sealed tube2750 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.042
T = 293(1) Kθmax = 26.0º
P = 101(1) kPaθmin = 4.1º
ω scansh = −11→11
Absorption correction: nonek = −21→21
19673 measured reflectionsl = −14→14

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.068  w = 1/[σ2(Fo2) + (0.0745P)2 + 0.785P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.175(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.37 e Å3
3789 reflectionsΔρmin = −0.16 e Å3
225 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2706 (2)0.08567 (10)1.00183 (17)0.0842 (6)
O20.04537 (19)0.13445 (12)0.96352 (17)0.0852 (6)
O30.0699 (2)0.14787 (12)0.72365 (14)0.0819 (6)
N10.2059 (2)−0.06289 (11)1.02163 (16)0.0491 (5)
H10.114 (3)−0.0780 (13)1.0175 (19)0.059*
H20.209 (2)−0.0112 (15)1.0178 (19)0.059*
C10.1749 (2)0.13270 (11)0.95593 (17)0.0471 (5)
C20.2251 (2)0.19520 (11)0.89133 (17)0.0438 (5)
C30.3308 (3)0.24641 (13)0.9464 (2)0.0634 (6)
H30.37310.24131.02410.076*
C40.3748 (4)0.30529 (15)0.8877 (3)0.0898 (10)
H40.44650.33920.92580.108*
C50.3122 (4)0.31337 (16)0.7736 (3)0.0894 (10)
H50.34000.35350.73450.107*
C60.2088 (3)0.26265 (16)0.7164 (2)0.0750 (8)
H60.16710.26820.63880.090*
C70.1666 (2)0.20300 (13)0.77480 (19)0.0537 (6)
C80.0317 (4)0.1435 (2)0.6036 (2)0.0992 (11)
H8B−0.02210.18780.57220.149*
H8C−0.02950.10000.57950.149*
H8A0.12080.13950.57760.149*
C90.2458 (2)−0.09394 (12)0.91808 (18)0.0507 (5)
H90.3437−0.07420.91620.061*
C100.1326 (3)−0.06616 (16)0.8135 (2)0.0761 (7)
H10A0.1324−0.01170.81290.091*
H10B0.0340−0.08300.81590.091*
C110.1681 (4)−0.09527 (19)0.7053 (2)0.0940 (10)
H11B0.0913−0.07870.63970.113*
H11A0.2622−0.07420.69920.113*
C120.1775 (4)−0.17925 (19)0.7044 (3)0.0950 (10)
H12B0.2082−0.19560.63770.114*
H12A0.0800−0.20050.70050.114*
C130.2877 (5)−0.2071 (2)0.8103 (3)0.1075 (11)
H13A0.3869−0.19110.80860.129*
H13B0.2865−0.26160.81060.129*
C140.2540 (3)−0.17841 (14)0.9200 (2)0.0760 (8)
H14B0.1600−0.19910.92710.091*
H14A0.3316−0.19480.98520.091*
C150.3019 (2)−0.08294 (11)1.13645 (17)0.0471 (5)
H150.2968−0.13741.14670.057*
C160.2390 (2)−0.04421 (14)1.2256 (2)0.0599 (6)
H16A0.23340.00941.21100.072*
H16B0.1386−0.06231.21940.072*
C170.3332 (3)−0.05828 (17)1.3448 (2)0.0743 (7)
H17B0.3262−0.11091.36370.089*
H17A0.2947−0.02871.39810.089*
C180.4956 (3)−0.03803 (17)1.3571 (2)0.0755 (7)
H18A0.50470.01591.34900.091*
H18B0.5541−0.05221.43230.091*
C190.5553 (3)−0.07794 (15)1.2679 (2)0.0717 (7)
H19B0.6573−0.06231.27480.086*
H19A0.5555−0.13171.28120.086*
C200.4629 (2)−0.06121 (14)1.1488 (2)0.0594 (6)
H20A0.5021−0.08901.09410.071*
H20B0.4689−0.00801.13290.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1052 (14)0.0553 (11)0.1037 (15)0.0129 (10)0.0479 (12)0.0276 (10)
O20.0615 (10)0.1125 (16)0.0879 (14)−0.0220 (10)0.0307 (9)0.0165 (11)
O30.0777 (11)0.1234 (17)0.0406 (9)−0.0256 (11)0.0079 (8)−0.0009 (9)
N10.0455 (9)0.0437 (10)0.0621 (12)0.0020 (8)0.0210 (8)0.0081 (8)
C10.0600 (12)0.0460 (12)0.0374 (11)−0.0104 (10)0.0166 (9)−0.0060 (9)
C20.0455 (10)0.0423 (11)0.0465 (12)0.0037 (8)0.0168 (9)0.0004 (8)
C30.0789 (16)0.0585 (14)0.0571 (14)−0.0167 (12)0.0252 (12)−0.0057 (11)
C40.121 (2)0.0557 (16)0.108 (3)−0.0344 (16)0.056 (2)−0.0122 (15)
C50.127 (3)0.0545 (16)0.108 (3)0.0052 (17)0.068 (2)0.0244 (16)
C60.0877 (18)0.0762 (18)0.0692 (17)0.0236 (15)0.0344 (14)0.0327 (14)
C70.0502 (11)0.0625 (14)0.0503 (13)0.0092 (10)0.0164 (10)0.0082 (10)
C80.091 (2)0.152 (3)0.0475 (16)0.004 (2)0.0051 (14)−0.0046 (18)
C90.0505 (11)0.0522 (12)0.0529 (13)−0.0041 (9)0.0196 (10)0.0033 (9)
C100.0922 (19)0.0692 (17)0.0626 (17)0.0069 (14)0.0116 (14)0.0055 (13)
C110.125 (3)0.091 (2)0.0612 (18)−0.0079 (19)0.0165 (17)0.0017 (15)
C120.121 (3)0.093 (2)0.071 (2)−0.0183 (19)0.0259 (18)−0.0164 (17)
C130.164 (3)0.078 (2)0.088 (2)0.027 (2)0.046 (2)−0.0125 (17)
C140.107 (2)0.0544 (15)0.0715 (18)0.0130 (14)0.0313 (15)0.0015 (12)
C150.0506 (11)0.0382 (10)0.0542 (13)0.0017 (8)0.0165 (10)0.0060 (9)
C160.0547 (12)0.0597 (14)0.0712 (16)−0.0047 (10)0.0268 (11)−0.0068 (11)
C170.0851 (18)0.0795 (18)0.0591 (16)−0.0140 (14)0.0200 (13)−0.0135 (13)
C180.0735 (16)0.0733 (17)0.0737 (18)−0.0050 (13)0.0074 (13)−0.0142 (14)
C190.0571 (13)0.0656 (16)0.0864 (19)0.0069 (12)0.0071 (13)−0.0050 (14)
C200.0476 (11)0.0629 (14)0.0698 (16)0.0050 (10)0.0189 (11)0.0007 (11)

Geometric parameters (Å, °)

O1—C11.244 (3)C11—C121.498 (5)
O2—C11.229 (3)C11—H11B0.9700
O3—C71.368 (3)C11—H11A0.9700
O3—C81.413 (3)C12—C131.510 (5)
N1—C151.495 (3)C12—H12B0.9700
N1—C91.504 (3)C12—H12A0.9700
N1—H10.88 (2)C13—C141.532 (4)
N1—H20.92 (3)C13—H13A0.9700
C1—C21.502 (3)C13—H13B0.9700
C2—C31.381 (3)C14—H14B0.9700
C2—C71.389 (3)C14—H14A0.9700
C3—C41.386 (4)C15—C201.513 (3)
C3—H30.9300C15—C161.520 (3)
C4—C51.368 (4)C15—H150.9800
C4—H40.9300C16—C171.511 (3)
C5—C61.371 (4)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C6—C71.387 (3)C17—C181.520 (4)
C6—H60.9300C17—H17B0.9700
C8—H8B0.9600C17—H17A0.9700
C8—H8C0.9600C18—C191.513 (4)
C8—H8A0.9600C18—H18A0.9700
C9—C141.505 (3)C18—H18B0.9700
C9—C101.511 (3)C19—C201.513 (3)
C9—H90.9800C19—H19B0.9700
C10—C111.526 (4)C19—H19A0.9700
C10—H10A0.9700C20—H20A0.9700
C10—H10B0.9700C20—H20B0.9700
C7—O3—C8118.2 (2)C11—C12—H12B109.5
C15—N1—C9118.55 (16)C13—C12—H12B109.5
C15—N1—H1108.5 (15)C11—C12—H12A109.5
C9—N1—H1106.2 (15)C13—C12—H12A109.5
C15—N1—H2105.4 (14)H12B—C12—H12A108.1
C9—N1—H2107.8 (14)C12—C13—C14112.8 (3)
H1—N1—H2110 (2)C12—C13—H13A109.0
O2—C1—O1125.7 (2)C14—C13—H13A109.0
O2—C1—C2117.3 (2)C12—C13—H13B109.0
O1—C1—C2116.86 (18)C14—C13—H13B109.0
C3—C2—C7118.3 (2)H13A—C13—H13B107.8
C3—C2—C1120.77 (19)C9—C14—C13109.9 (2)
C7—C2—C1120.94 (18)C9—C14—H14B109.7
C2—C3—C4121.0 (3)C13—C14—H14B109.7
C2—C3—H3119.5C9—C14—H14A109.7
C4—C3—H3119.5C13—C14—H14A109.7
C5—C4—C3119.8 (3)H14B—C14—H14A108.2
C5—C4—H4120.1N1—C15—C20111.74 (17)
C3—C4—H4120.1N1—C15—C16108.11 (17)
C4—C5—C6120.4 (2)C20—C15—C16111.23 (18)
C4—C5—H5119.8N1—C15—H15108.6
C6—C5—H5119.8C20—C15—H15108.6
C5—C6—C7119.8 (3)C16—C15—H15108.6
C5—C6—H6120.1C17—C16—C15112.00 (19)
C7—C6—H6120.1C17—C16—H16A109.2
O3—C7—C6123.7 (2)C15—C16—H16A109.2
O3—C7—C2115.66 (19)C17—C16—H16B109.2
C6—C7—C2120.6 (2)C15—C16—H16B109.2
O3—C8—H8B109.5H16A—C16—H16B107.9
O3—C8—H8C109.5C16—C17—C18111.9 (2)
H8B—C8—H8C109.5C16—C17—H17B109.2
O3—C8—H8A109.5C18—C17—H17B109.2
H8B—C8—H8A109.5C16—C17—H17A109.2
H8C—C8—H8A109.5C18—C17—H17A109.2
N1—C9—C14112.10 (18)H17B—C17—H17A107.9
N1—C9—C10108.46 (18)C19—C18—C17110.6 (2)
C14—C9—C10111.2 (2)C19—C18—H18A109.5
N1—C9—H9108.3C17—C18—H18A109.5
C14—C9—H9108.3C19—C18—H18B109.5
C10—C9—H9108.3C17—C18—H18B109.5
C9—C10—C11110.9 (2)H18A—C18—H18B108.1
C9—C10—H10A109.5C20—C19—C18111.8 (2)
C11—C10—H10A109.5C20—C19—H19B109.3
C9—C10—H10B109.5C18—C19—H19B109.3
C11—C10—H10B109.5C20—C19—H19A109.3
H10A—C10—H10B108.0C18—C19—H19A109.3
C12—C11—C10111.7 (3)H19B—C19—H19A107.9
C12—C11—H11B109.3C19—C20—C15110.46 (19)
C10—C11—H11B109.3C19—C20—H20A109.6
C12—C11—H11A109.3C15—C20—H20A109.6
C10—C11—H11A109.3C19—C20—H20B109.6
H11B—C11—H11A107.9C15—C20—H20B109.6
C11—C12—C13110.5 (3)H20A—C20—H20B108.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H2···O10.92 (3)1.84 (3)2.735 (3)163 (2)
N1—H1···O2i0.88 (2)1.85 (3)2.703 (2)162 (2)
C20—H20A···O1ii0.972.663.457 (3)140

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2244).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Ballabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des.5, 1545–1553.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Ng, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291–292. [PubMed]
  • Ng, S. W., Fun, H.-K. & Shanmuga Sundara Raj, S. (1999). Acta Cryst. C55, 2145–2147.
  • Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 312–316.
  • Ng, S. W., Kumar Das, V. G. & Tiekink, E. R. T. (1991). J. Organomet. Chem.411, 121–129.
  • Ng, S. W., Naumov, P., Drew, M. G. B., Wojciechowski, G. & Brzezinski, B. (2001). J. Mol. Struct.595, 29–37.
  • Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Wroclaw, Poland.
  • Persistence of Vision (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Subramanian, R. R., Anandan, S. S., Kwek, K. H., Low, K. S., Shanmuga Sundara Raj, S., Fun, H.-K., Razak, I. A., Hanna, J. V. & Ng, S. W. (2000). Acta Cryst. C56, e292–e294.
  • Trivedi, D. R., Ballabh, A. & Dastidar, P. (2004). Chem. Eur. J.10, 5311–5322. [PubMed]
  • Trivedi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem.5, 1545–1553.
  • Valadon, P. (2000–2003). RasTop Phillipe Valadon, Location?
  • Zain, S. M. & Ng, S. W. (2007). Acta Cryst. E63, o3303.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography