PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o793.
Published online 2008 April 2. doi:  10.1107/S1600536808008489
PMCID: PMC2961177

5-Bromo-2-methyl-3-phenyl­sulfonyl-1-benzofuran

Abstract

The title compound, C15H11BrO3S, was prepared by the oxidation of 5-bromo-2-methyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 78.99 (8)° with the plane of the benzofuran fragment. The crystal structure is stabilized by C—H(...)π inter­actions between a benzene H atom of the benzofuran unit and the phenyl ring of the phenyl­sulfonyl substituent from a neighbouring mol­ecule. In addition, the crystal structure exhibits intra- and inter­molecular C—H(...)O inter­actions.

Related literature

For the crystal structures of similar 5-bromo-2-methyl-1-benzofuran derivatives, see: Choi et al. (2007 [triangle]); Seo et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o793-scheme1.jpg

Experimental

Crystal data

  • C15H11BrO3S
  • M r = 351.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o793-efi7.jpg
  • a = 7.337 (1) Å
  • b = 11.345 (1) Å
  • c = 16.602 (2) Å
  • β = 94.582 (3)°
  • V = 1377.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.14 mm−1
  • T = 173 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.463, T max = 0.542
  • 8005 measured reflections
  • 3009 independent reflections
  • 2349 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.086
  • S = 1.03
  • 3009 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008489/cf2191sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008489/cf2191Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related to earlier communications on the synthesis and structure of 5-bromo-2-methyl-1-benzofuran analogues, viz. 5-bromo-2-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007) and 5-bromo-2-methyl-3-phenylsulfinyl-1-benzofuran (Seo et al., 2007). Here we report the crystal structure of the title compound, 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9–C14) makes a dihedral angle of 78.99 (8)° with the plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between a benzene H atom of the benzofuran unit and the phenyl ring of the phenylsulfonyl substituent from an adjacent molecule, with a C6—H6···Cgi separation of 2.74 Å (Fig. 2; Cg is the centroid of the C9–C14 phenyl ring, symmetry code as in Fig. 2). Additionally, intra- and intermolecular C—H···O interactions in the structure are observed (Fig. 2).

Experimental

3-Chloroperoxybenzoic acid (77%, 336 mg, 1.5 mmol) was added in small portions to a stirred solution of 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (223 mg, 0.7 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 464–465 K; Rf = 0.59 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.80 (s, 3H), 7.29 (d, J = 8.44 Hz, 1H), 7.41 (dd, J = 8.44 Hz and J = 1.84 Hz, 1H), 7.51–7.56 (m, 2H), 7.58–7.61 (m, 1H), 7.98–8.02 (m, 2H), 8.05 (d, J = 2.20 Hz, 1H); EI—MS 352 [M+2], 350 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoides drawn at the 50% probability level.
Fig. 2.
C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x + 2, -y + 1, -z; (ii) -x + 3/2, y - 1/2, -z + 1/2; (iii) ...

Crystal data

C15H11BrO3SF000 = 704
Mr = 351.21Dx = 1.693 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P_2ynCell parameters from 3065 reflections
a = 7.337 (1) Åθ = 2.5–27.7º
b = 11.345 (1) ŵ = 3.14 mm1
c = 16.602 (2) ÅT = 173 (2) K
β = 94.582 (3)ºBlock, colorless
V = 1377.5 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3009 independent reflections
Radiation source: fine-focus sealed tube2349 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 27.0º
T = 173(2) Kθmin = 2.5º
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan(SADABS; Sheldrick, 1999)k = −14→13
Tmin = 0.463, Tmax = 0.542l = −14→21
8005 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.086  w = 1/[σ2(Fo2) + (0.0401P)2 + 0.6448P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3009 reflectionsΔρmax = 0.55 e Å3
182 parametersΔρmin = −0.44 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.79772 (5)0.88457 (2)0.038216 (19)0.03963 (12)
S0.65781 (9)0.40138 (5)0.19581 (4)0.02489 (16)
O10.7486 (3)0.36914 (16)−0.03375 (11)0.0296 (4)
O20.5677 (3)0.50746 (16)0.21839 (12)0.0327 (5)
O30.5740 (3)0.28903 (15)0.20838 (12)0.0344 (5)
C10.6960 (4)0.4145 (2)0.09406 (16)0.0242 (5)
C20.7309 (3)0.5236 (2)0.05267 (15)0.0227 (5)
C30.7410 (4)0.6429 (2)0.07353 (16)0.0255 (5)
H30.72090.66930.12640.031*
C40.7819 (4)0.7208 (2)0.01307 (17)0.0287 (6)
C50.8107 (4)0.6854 (2)−0.06521 (16)0.0305 (6)
H50.83720.7425−0.10450.037*
C60.8010 (4)0.5675 (3)−0.08587 (16)0.0308 (6)
H60.81980.5412−0.13890.037*
C70.7626 (3)0.4899 (2)−0.02563 (16)0.0245 (5)
C80.7097 (4)0.3254 (2)0.03977 (16)0.0271 (6)
C90.8786 (4)0.3998 (2)0.24546 (16)0.0259 (6)
C100.9716 (4)0.2932 (2)0.25599 (16)0.0321 (6)
H100.91600.22180.23680.039*
C111.1457 (5)0.2921 (3)0.29469 (19)0.0446 (8)
H111.21050.22000.30240.054*
C121.2249 (5)0.3974 (3)0.32221 (19)0.0506 (9)
H121.34450.39690.34880.061*
C131.1314 (5)0.5031 (3)0.31132 (19)0.0467 (8)
H131.18700.57450.33040.056*
C140.9580 (4)0.5048 (2)0.27289 (17)0.0333 (6)
H140.89350.57710.26520.040*
C150.6972 (4)0.1947 (2)0.04402 (19)0.0374 (7)
H15A0.81930.16050.04190.056*
H15B0.61690.1657−0.00170.056*
H15C0.64710.17190.09470.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0526 (2)0.02501 (16)0.0412 (2)−0.00489 (13)0.00320 (14)0.00437 (12)
S0.0301 (4)0.0189 (3)0.0269 (3)−0.0004 (2)0.0096 (3)0.0010 (2)
O10.0328 (11)0.0301 (10)0.0263 (10)0.0005 (8)0.0042 (8)−0.0057 (8)
O20.0393 (12)0.0266 (9)0.0341 (11)0.0064 (8)0.0149 (9)−0.0020 (8)
O30.0392 (12)0.0259 (10)0.0398 (12)−0.0066 (8)0.0140 (9)0.0038 (8)
C10.0256 (14)0.0230 (12)0.0246 (13)0.0000 (10)0.0059 (11)−0.0002 (10)
C20.0191 (13)0.0259 (12)0.0235 (13)0.0019 (10)0.0038 (10)0.0020 (10)
C30.0302 (14)0.0242 (12)0.0224 (13)0.0021 (10)0.0046 (11)−0.0006 (10)
C40.0273 (15)0.0262 (13)0.0325 (15)−0.0024 (11)0.0019 (12)0.0024 (11)
C50.0288 (15)0.0371 (15)0.0258 (14)0.0000 (12)0.0039 (11)0.0081 (12)
C60.0296 (15)0.0427 (15)0.0202 (14)0.0016 (12)0.0033 (11)−0.0001 (12)
C70.0224 (13)0.0252 (12)0.0258 (14)0.0019 (10)0.0007 (11)−0.0038 (10)
C80.0243 (14)0.0275 (13)0.0298 (15)−0.0014 (11)0.0032 (11)−0.0022 (11)
C90.0337 (15)0.0256 (13)0.0196 (13)−0.0007 (10)0.0096 (11)0.0012 (10)
C100.0420 (18)0.0317 (14)0.0239 (14)0.0033 (12)0.0101 (12)0.0077 (11)
C110.043 (2)0.059 (2)0.0330 (17)0.0144 (16)0.0095 (14)0.0149 (15)
C120.0376 (19)0.087 (3)0.0264 (17)−0.0062 (18)0.0010 (14)0.0063 (17)
C130.053 (2)0.059 (2)0.0276 (16)−0.0175 (17)0.0033 (14)−0.0068 (15)
C140.0444 (18)0.0305 (14)0.0258 (14)−0.0048 (12)0.0087 (13)−0.0023 (11)
C150.0437 (19)0.0249 (14)0.0443 (18)−0.0021 (12)0.0074 (14)−0.0072 (12)

Geometric parameters (Å, °)

Br—C41.906 (3)C6—H60.950
S—O21.4372 (18)C8—C151.487 (4)
S—O31.4377 (18)C9—C141.387 (4)
S—C11.740 (3)C9—C101.393 (4)
S—C91.758 (3)C10—C111.383 (4)
O1—C81.369 (3)C10—H100.950
O1—C71.380 (3)C11—C121.389 (5)
C1—C81.363 (4)C11—H110.950
C1—C21.448 (3)C12—C131.387 (5)
C2—C71.392 (3)C12—H120.950
C2—C31.398 (3)C13—C141.377 (4)
C3—C41.388 (4)C13—H130.950
C3—H30.950C14—H140.950
C4—C51.392 (4)C15—H15A0.980
C5—C61.381 (4)C15—H15B0.980
C5—H50.950C15—H15C0.980
C6—C71.378 (4)
O2—S—O3119.57 (12)C1—C8—O1110.7 (2)
O2—S—C1107.14 (12)C1—C8—C15134.4 (3)
O3—S—C1108.70 (12)O1—C8—C15114.9 (2)
O2—S—C9108.19 (12)C14—C9—C10121.1 (3)
O3—S—C9108.15 (12)C14—C9—S119.5 (2)
C1—S—C9104.02 (12)C10—C9—S119.5 (2)
C8—O1—C7106.97 (19)C11—C10—C9119.4 (3)
C8—C1—C2107.1 (2)C11—C10—H10120.3
C8—C1—S127.2 (2)C9—C10—H10120.3
C2—C1—S125.57 (19)C10—C11—C12119.5 (3)
C7—C2—C3119.2 (2)C10—C11—H11120.3
C7—C2—C1104.9 (2)C12—C11—H11120.3
C3—C2—C1135.9 (2)C13—C12—C11120.7 (3)
C4—C3—C2116.6 (2)C13—C12—H12119.6
C4—C3—H3121.7C11—C12—H12119.6
C2—C3—H3121.7C14—C13—C12120.1 (3)
C3—C4—C5123.3 (2)C14—C13—H13119.9
C3—C4—Br118.4 (2)C12—C13—H13119.9
C5—C4—Br118.32 (19)C13—C14—C9119.2 (3)
C6—C5—C4120.1 (2)C13—C14—H14120.4
C6—C5—H5119.9C9—C14—H14120.4
C4—C5—H5119.9C8—C15—H15A109.5
C7—C6—C5116.6 (2)C8—C15—H15B109.5
C7—C6—H6121.7H15A—C15—H15B109.5
C5—C6—H6121.7C8—C15—H15C109.5
C6—C7—O1125.5 (2)H15A—C15—H15C109.5
C6—C7—C2124.2 (2)H15B—C15—H15C109.5
O1—C7—C2110.3 (2)
O2—S—C1—C8−152.5 (2)C3—C2—C7—O1179.2 (2)
O3—S—C1—C8−22.0 (3)C1—C2—C7—O10.1 (3)
C9—S—C1—C893.1 (3)C2—C1—C8—O1−0.8 (3)
O2—S—C1—C231.8 (3)S—C1—C8—O1−177.14 (19)
O3—S—C1—C2162.3 (2)C2—C1—C8—C15177.1 (3)
C9—S—C1—C2−82.7 (2)S—C1—C8—C150.8 (5)
C8—C1—C2—C70.4 (3)C7—O1—C8—C10.8 (3)
S—C1—C2—C7176.8 (2)C7—O1—C8—C15−177.5 (2)
C8—C1—C2—C3−178.5 (3)O2—S—C9—C14−21.6 (2)
S—C1—C2—C3−2.0 (5)O3—S—C9—C14−152.5 (2)
C7—C2—C3—C40.3 (4)C1—S—C9—C1492.0 (2)
C1—C2—C3—C4179.1 (3)O2—S—C9—C10158.9 (2)
C2—C3—C4—C50.5 (4)O3—S—C9—C1028.0 (2)
C2—C3—C4—Br−179.92 (19)C1—S—C9—C10−87.4 (2)
C3—C4—C5—C6−0.6 (4)C14—C9—C10—C110.2 (4)
Br—C4—C5—C6179.8 (2)S—C9—C10—C11179.7 (2)
C4—C5—C6—C7−0.2 (4)C9—C10—C11—C12−0.2 (4)
C5—C6—C7—O1−179.4 (2)C10—C11—C12—C130.1 (5)
C5—C6—C7—C21.1 (4)C11—C12—C13—C140.0 (5)
C8—O1—C7—C6179.8 (3)C12—C13—C14—C90.1 (4)
C8—O1—C7—C2−0.6 (3)C10—C9—C14—C13−0.2 (4)
C3—C2—C7—C6−1.2 (4)S—C9—C14—C13−179.6 (2)
C1—C2—C7—C6179.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi0.952.743.561 (3)145
C10—H10···O2ii0.952.543.285 (3)135
C14—H14···O3iii0.952.453.249 (3)141
C15—H15C···O30.982.403.131 (4)131

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2191).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o521–o522.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3204.
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography