PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o946–o947.
Published online 2008 April 30. doi:  10.1107/S1600536808011987
PMCID: PMC2961175

Bispuupehenone from the South Chinese Sea sponge Dysidea sp.

Abstract

Bispuupehenone, C42H54O6, formally results from dimerization of puupehenone, which is constructed of sesquiterpene and benzene units. Bispuupehenone was isolated from the South China Sea sponge Dysidea sp. and the single-crystal X-ray diffraction analysis confirmed the previously reported structure. The mol­ecule is located on a twofold axis and the dimerization forms two fused dibenzopyran systems related by symmetry. In the asymmetric unit, the two cyclohexane rings adopt chair conformations, while the two pyran rings adopt half-chair conformations. The relative stereochemistry and configurations for the ring junctions are in agreement with the structure reported previously.

Related literature

The title compound was first isolated from the Pacific marine sponge Heteronema sp., see Amade et al. (1983 [triangle]). For the biological and pharmaceutical activity of puupehenone, see: Barrero et al. (1998 [triangle], 1999 [triangle]); Castro et al. (2004 [triangle]); Ciavatta et al. (2007 [triangle]); Longley et al. (1993 [triangle]); Kohmoto et al. (1987 [triangle]); Takamatsu et al. (2003 [triangle]). For the synthesis and semi-synthesis of puupehenone and its derivatives, see: Hamann (2003 [triangle]); Alvarez-Manzaneda et al. (2005 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o946-scheme1.jpg

Experimental

Crystal data

  • C42H54O6
  • M r = 654.85
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0o946-efi1.jpg
  • a = 13.5981 (10) Å
  • c = 18.7260 (19) Å
  • V = 3462.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.39 × 0.24 × 0.14 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.743, T max = 0.990
  • 20532 measured reflections
  • 2219 independent reflections
  • 1644 reflections with I > 2σ(I)
  • R int = 0.110

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.113
  • S = 0.94
  • 2219 reflections
  • 225 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808011987/bh2164sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011987/bh2164Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The research work was financially supported by the National Marine ‘863’ Project (No. 2006 A A09Z412), the Natural Science Foundation of China (Nos. 3073108, 20772136, and 20721003), CAS Key Project (grant KSCX2-YW-R-18) and STCSM Projects (No. 017XD14036 and 06DZ22028), and partially funded by a grant from the Syngenta-SIMM-PhD Studentship Project.

supplementary crystallographic information

Comment

Bispuupehenone (I) was firstly isolated from Pacific marine sponge Heteronema sp. (Amade et al., 1983), and was considered to be generated from co-occurring puupehenone (II) (Fig. 1) by in vitro oxidative coupling. The benzopyrane structure for the dimer is deduced by the comparison of its UV spectrum data with those of a simple dibenzofuran and a simple benzopyran. Although compound (II) and its derivatives have been reported to display a wide range of important biological activities, including antiviral, antifungal, antimalarial, and antitumor activities (Barrero et al., 1998, 1999; Longley et al., 1993; Castro et al., 2004; Ciavatta et al., 2007; Kohmoto et al., 1987; Takamatsu et al., 2003), the biological properties of (I) have been seldom reported. Synthesis and semi-synthesis of puupehenone and its derivatives have been published (Hamann, 2003); Alvarez-Manzaneda et al., 2005, 2007).

As part of our research project on the study of the South China Sea marine organisms, a sample of the sponge Dysidea sp. was collected off the Lingshui Bay, Hainan Province, China, and was chemically investigated. Bispuupehenone, (I), was isolated and crystallized from the Et2O-soluble fraction of the acetone extract of the animal, and the structure of (I) was firstly elucidated by spectroscopic methods, NMR, UV and MS, and eventually confirmed through X-ray diffraction analysis. Herein, we report the X-ray structure of (I).

The projection of bispuupehenone is shown in Figure 2. In the structure, two puupehenone moieties are connected through two O atoms and a C—C bond between benzene rings, forming a benzopyran moiety at the midpoint of the axial symmetric molecule. Rings A and B of (I) are in chair conformations, while rings C and D adopt half-chair conformations. Moreover, the trans junction between rings A/B and the cis junction between rings B/C are in agreement with the structure reported previously.

Bispuupehenone was tested for the inhibitory activities against hPTP1B (human protein tyrosine phosphatase 1B), a key target for the treatment of Type-II diabetes and obesity, and showed excellent inhibitory effect with IC50 value of 0.98 mg ml-1. Other bioassays, such as antibacterial and anti-inflammatory, are currently ongoing.

Experimental

The specimens of sponge were collected from Lingshui Bay, Hainan Province, China, in July 2004, and identified as Dysidea sp. by Professor J.-H. Li of the Institute of Oceanology, Chinese Academy of Sciences. A voucher specimen (LS-210) is available for inspection at the Herbarium of Shanghai Institute of Materia Medica, CAS. The frozen animals (dry weight 96.3 g) were cut into small pieces and exhaustively extracted with acetone (3×3 L). The organic extract was evaporated to give a residue, which was partitioned between Et2O and H2O. The Et2O solution was concentrated under reduced pressure to give a dark brown residue (4.7 g), which was fractionated by gradient silica gel column chromatography [0–100% acetone in light petroleum ether (PE)], yielding seven fractions (A···G). The fraction C eluted by PE/Me2CO (95:5) was further purified on a second silica gel column chromatography eluting with PE—Et2O (90:10) to afford (I) (14.3 mg). Crystals suitable for X-ray analysis were obtained by slow evaporation from a chloroform solution.

Refinement

The non-H atoms were located in successive difference Fourier syntheses. The final refinements were performed by full-matrix least-squares methods with isotropic thermal parameters for all non-H atoms. Hydroxyl H atom H2 was found in a difference map and freely refined with an isotropic displacement parameter. Other H atoms were placed in calculated positions and included in the final refinement in the riding model approximation, with displacement parameters derived from the parent atoms to which they are bonded. In the absence of significant anomalous dispersion effects, 1571 measured Friedel pairs were merged and the absolute configuration was arbitrarily assigned.

Figures

Fig. 1.
The structures of bispuupehenone (I) and puupehenone (II).
Fig. 2.
The projection of (I) showing the atom-labeling scheme.

Crystal data

C42H54O6Z = 4
Mr = 654.85F000 = 1416
Tetragonal, P41212Dx = 1.256 Mg m3
Hall symbol: P 4abw 2nwMo Kα radiation λ = 0.71073 Å
a = 13.5981 (10) ÅCell parameters from 4034 reflections
b = 13.5981 (10) Åθ = 4.8–54.2º
c = 18.7260 (19) ŵ = 0.08 mm1
α = 90ºT = 293 (2) K
β = 90ºPrismatic, colourless
γ = 90º0.39 × 0.24 × 0.14 mm
V = 3462.6 (5) Å3

Data collection

Bruker APEX CCD area-detector diffractometer2219 independent reflections
Radiation source: fine-focus sealed tube1644 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.110
T = 293(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −16→17
Tmin = 0.743, Tmax = 0.990k = −17→17
20532 measured reflectionsl = −11→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.07P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.007
2219 reflectionsΔρmax = 0.23 e Å3
225 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.15743 (13)0.55657 (12)0.08619 (8)0.0429 (5)
O20.12262 (16)0.48461 (14)0.33312 (11)0.0530 (5)
O30.34879 (12)0.77308 (13)0.13171 (8)0.0415 (4)
C10.1684 (2)0.87117 (19)−0.00763 (14)0.0499 (7)
H1A0.16940.90340.03860.060*
H1B0.23400.8757−0.02770.060*
C20.0968 (3)0.9254 (2)−0.05633 (14)0.0637 (9)
H2A0.03220.9261−0.03450.076*
H2B0.11830.9930−0.06190.076*
C30.0904 (3)0.8771 (2)−0.12908 (15)0.0681 (9)
H3A0.15380.8820−0.15250.082*
H3B0.04300.9126−0.15800.082*
C40.0601 (3)0.7683 (2)−0.12559 (14)0.0573 (8)
C50.1302 (2)0.71542 (19)−0.07258 (12)0.0431 (6)
H50.19540.7217−0.09440.052*
C60.1141 (2)0.6044 (2)−0.06599 (13)0.0474 (7)
H6A0.05770.5915−0.03560.057*
H6B0.10100.5765−0.11270.057*
C70.2055 (2)0.5575 (2)−0.03409 (13)0.0484 (7)
H7A0.19500.4871−0.03030.058*
H7B0.26040.5679−0.06640.058*
C80.2325 (2)0.59716 (19)0.03840 (13)0.0411 (6)
C90.23190 (19)0.71109 (17)0.04069 (12)0.0371 (6)
H90.29050.73230.01450.045*
C100.14213 (18)0.76213 (18)0.00287 (13)0.0389 (6)
C110.0747 (3)0.7242 (3)−0.20075 (15)0.0850 (12)
H11A0.04220.7649−0.23540.127*
H11B0.04720.6592−0.20220.127*
H11C0.14360.7211−0.21150.127*
C12−0.0502 (2)0.7571 (3)−0.10853 (18)0.0746 (10)
H12A−0.06620.7956−0.06720.112*
H12B−0.06470.6892−0.09930.112*
H12C−0.08840.7795−0.14850.112*
C130.0492 (2)0.7539 (2)0.04922 (13)0.0462 (6)
H13A0.06460.77220.09750.069*
H13B0.02570.68730.04830.069*
H13C−0.00060.79690.03080.069*
C140.24566 (18)0.74743 (19)0.11748 (12)0.0365 (5)
H140.20650.80740.12310.044*
C150.3325 (2)0.5555 (2)0.06039 (15)0.0539 (7)
H15A0.34550.57210.10930.081*
H15B0.38290.58290.03050.081*
H15C0.33190.48520.05510.081*
C160.21009 (17)0.67425 (18)0.17229 (12)0.0355 (6)
C170.22961 (17)0.69613 (18)0.24324 (13)0.0351 (5)
C180.20089 (17)0.63566 (18)0.29797 (12)0.0359 (5)
C190.15135 (18)0.54863 (18)0.28072 (13)0.0384 (6)
C200.13528 (19)0.52376 (18)0.21062 (13)0.0401 (6)
H200.10290.46550.19970.048*
C210.16728 (18)0.58544 (18)0.15546 (13)0.0367 (6)
H20.149 (3)0.513 (3)0.3750 (19)0.086 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0538 (11)0.0380 (9)0.0370 (9)−0.0081 (8)0.0003 (8)−0.0055 (8)
O20.0695 (13)0.0420 (10)0.0474 (11)−0.0153 (10)0.0097 (10)0.0052 (9)
O30.0395 (9)0.0490 (10)0.0360 (9)−0.0103 (8)0.0026 (8)−0.0008 (8)
C10.0642 (18)0.0418 (14)0.0436 (14)−0.0107 (13)−0.0004 (14)0.0011 (13)
C20.087 (2)0.0442 (16)0.0597 (19)−0.0007 (17)−0.0084 (18)0.0115 (14)
C30.092 (3)0.0619 (19)0.0507 (18)−0.0038 (18)−0.0139 (18)0.0132 (16)
C40.072 (2)0.0574 (18)0.0421 (15)−0.0089 (15)−0.0117 (15)0.0084 (15)
C50.0527 (15)0.0435 (14)0.0333 (13)−0.0078 (13)0.0020 (12)−0.0012 (11)
C60.0624 (18)0.0469 (15)0.0329 (13)−0.0116 (14)−0.0030 (13)−0.0100 (12)
C70.0604 (18)0.0436 (15)0.0412 (14)0.0014 (13)0.0053 (14)−0.0076 (12)
C80.0461 (15)0.0397 (13)0.0373 (13)0.0023 (12)0.0052 (12)−0.0056 (12)
C90.0410 (13)0.0376 (12)0.0328 (13)−0.0041 (11)0.0052 (11)−0.0029 (11)
C100.0441 (14)0.0387 (13)0.0339 (12)−0.0051 (11)0.0019 (11)0.0006 (11)
C110.134 (4)0.081 (2)0.0400 (18)−0.012 (3)−0.016 (2)0.0019 (17)
C120.071 (2)0.080 (2)0.073 (2)−0.0043 (19)−0.0276 (18)0.006 (2)
C130.0454 (15)0.0527 (16)0.0405 (14)0.0016 (14)0.0047 (12)−0.0006 (13)
C140.0366 (12)0.0396 (13)0.0332 (13)−0.0056 (11)−0.0004 (10)0.0001 (11)
C150.0551 (18)0.0540 (17)0.0526 (16)0.0122 (14)0.0044 (14)−0.0041 (14)
C160.0325 (12)0.0365 (13)0.0375 (13)−0.0026 (10)0.0022 (11)−0.0009 (11)
C170.0318 (12)0.0374 (12)0.0360 (13)−0.0021 (10)0.0019 (11)−0.0025 (11)
C180.0353 (12)0.0404 (13)0.0321 (13)−0.0011 (11)0.0022 (10)−0.0017 (11)
C190.0402 (14)0.0343 (13)0.0407 (13)−0.0035 (11)0.0071 (11)0.0036 (11)
C200.0432 (14)0.0341 (12)0.0430 (14)−0.0062 (11)0.0003 (12)−0.0051 (11)
C210.0380 (13)0.0375 (13)0.0345 (13)−0.0014 (11)0.0002 (11)−0.0047 (11)

Geometric parameters (Å, °)

O1—C211.362 (3)C8—C91.550 (3)
O1—C81.465 (3)C9—C141.532 (3)
O2—C191.369 (3)C9—C101.573 (3)
O2—H20.95 (4)C9—H90.9800
O3—C18i1.380 (3)C10—C131.537 (3)
O3—C141.469 (3)C11—H11A0.9600
C1—C21.524 (4)C11—H11B0.9600
C1—C101.538 (3)C11—H11C0.9600
C1—H1A0.9700C12—H12A0.9600
C1—H1B0.9700C12—H12B0.9600
C2—C31.515 (4)C12—H12C0.9600
C2—H2A0.9700C13—H13A0.9600
C2—H2B0.9700C13—H13B0.9600
C3—C41.536 (5)C13—H13C0.9600
C3—H3A0.9700C14—C161.509 (3)
C3—H3B0.9700C14—H140.9800
C4—C121.541 (5)C15—H15A0.9600
C4—C111.543 (4)C15—H15B0.9600
C4—C51.553 (4)C15—H15C0.9600
C5—C61.530 (4)C16—C211.377 (3)
C5—C101.558 (3)C16—C171.387 (3)
C5—H50.9800C17—C181.371 (3)
C6—C71.520 (4)C17—C17i1.450 (5)
C6—H6A0.9700C18—O3i1.380 (3)
C6—H6B0.9700C18—C191.399 (4)
C7—C81.506 (3)C19—C201.373 (3)
C7—H7A0.9700C20—C211.400 (3)
C7—H7B0.9700C20—H200.9300
C8—C151.530 (4)
C21—O1—C8113.87 (18)C10—C9—H9106.0
C19—O2—H2103 (2)C13—C10—C1109.5 (2)
C18i—O3—C14112.36 (18)C13—C10—C5113.4 (2)
C2—C1—C10113.2 (2)C1—C10—C5107.5 (2)
C2—C1—H1A108.9C13—C10—C9110.58 (19)
C10—C1—H1A108.9C1—C10—C9107.6 (2)
C2—C1—H1B108.9C5—C10—C9108.0 (2)
C10—C1—H1B108.9C4—C11—H11A109.5
H1A—C1—H1B107.7C4—C11—H11B109.5
C3—C2—C1111.4 (3)H11A—C11—H11B109.5
C3—C2—H2A109.3C4—C11—H11C109.5
C1—C2—H2A109.3H11A—C11—H11C109.5
C3—C2—H2B109.3H11B—C11—H11C109.5
C1—C2—H2B109.3C4—C12—H12A109.5
H2A—C2—H2B108.0C4—C12—H12B109.5
C2—C3—C4113.2 (3)H12A—C12—H12B109.5
C2—C3—H3A108.9C4—C12—H12C109.5
C4—C3—H3A108.9H12A—C12—H12C109.5
C2—C3—H3B108.9H12B—C12—H12C109.5
C4—C3—H3B108.9C10—C13—H13A109.5
H3A—C3—H3B107.7C10—C13—H13B109.5
C3—C4—C12111.4 (3)H13A—C13—H13B109.5
C3—C4—C11107.5 (3)C10—C13—H13C109.5
C12—C4—C11106.0 (3)H13A—C13—H13C109.5
C3—C4—C5108.0 (2)H13B—C13—H13C109.5
C12—C4—C5114.8 (2)O3—C14—C16109.82 (18)
C11—C4—C5108.9 (3)O3—C14—C9111.31 (19)
C6—C5—C4114.9 (2)C16—C14—C9112.7 (2)
C6—C5—C10110.1 (2)O3—C14—H14107.6
C4—C5—C10117.1 (2)C16—C14—H14107.6
C6—C5—H5104.4C9—C14—H14107.6
C4—C5—H5104.4C8—C15—H15A109.5
C10—C5—H5104.4C8—C15—H15B109.5
C7—C6—C5109.2 (2)H15A—C15—H15B109.5
C7—C6—H6A109.8C8—C15—H15C109.5
C5—C6—H6A109.8H15A—C15—H15C109.5
C7—C6—H6B109.8H15B—C15—H15C109.5
C5—C6—H6B109.8C21—C16—C17119.2 (2)
H6A—C6—H6B108.3C21—C16—C14123.9 (2)
C8—C7—C6113.7 (2)C17—C16—C14116.7 (2)
C8—C7—H7A108.8C18—C17—C16122.2 (2)
C6—C7—H7A108.8C18—C17—C17i119.0 (3)
C8—C7—H7B108.8C16—C17—C17i116.7 (3)
C6—C7—H7B108.8C17—C18—O3i123.3 (2)
H7A—C7—H7B107.7C17—C18—C19118.1 (2)
O1—C8—C7104.3 (2)O3i—C18—C19118.3 (2)
O1—C8—C15108.4 (2)O2—C19—C20118.9 (2)
C7—C8—C15109.0 (2)O2—C19—C18120.6 (2)
O1—C8—C9110.86 (19)C20—C19—C18120.4 (2)
C7—C8—C9112.5 (2)C19—C20—C21120.6 (2)
C15—C8—C9111.6 (2)C19—C20—H20119.7
C14—C9—C8110.36 (19)C21—C20—H20119.7
C14—C9—C10112.0 (2)O1—C21—C16120.8 (2)
C8—C9—C10115.6 (2)O1—C21—C20120.0 (2)
C14—C9—H9106.0C16—C21—C20119.2 (2)
C8—C9—H9106.0
C10—C1—C2—C3−57.4 (3)C14—C9—C10—C167.9 (2)
C1—C2—C3—C457.2 (4)C8—C9—C10—C1−164.5 (2)
C2—C3—C4—C1274.3 (3)C14—C9—C10—C5−176.30 (19)
C2—C3—C4—C11−169.9 (3)C8—C9—C10—C5−48.7 (3)
C2—C3—C4—C5−52.6 (4)C18i—O3—C14—C16−50.0 (2)
C3—C4—C5—C6−176.6 (3)C18i—O3—C14—C9−175.53 (19)
C12—C4—C5—C658.5 (4)C8—C9—C14—O397.3 (2)
C11—C4—C5—C6−60.1 (3)C10—C9—C14—O3−132.3 (2)
C3—C4—C5—C1052.0 (3)C8—C9—C14—C16−26.6 (3)
C12—C4—C5—C10−73.0 (3)C10—C9—C14—C16103.8 (2)
C11—C4—C5—C10168.4 (2)O3—C14—C16—C21−126.5 (2)
C4—C5—C6—C7160.9 (2)C9—C14—C16—C21−1.7 (3)
C10—C5—C6—C7−64.4 (3)O3—C14—C16—C1748.3 (3)
C5—C6—C7—C858.8 (3)C9—C14—C16—C17173.0 (2)
C21—O1—C8—C7−178.8 (2)C21—C16—C17—C18−5.2 (4)
C21—O1—C8—C1565.2 (3)C14—C16—C17—C18179.8 (2)
C21—O1—C8—C9−57.6 (3)C21—C16—C17—C17i158.50 (17)
C6—C7—C8—O172.2 (3)C14—C16—C17—C17i−16.5 (2)
C6—C7—C8—C15−172.2 (2)C16—C17—C18—O3i174.0 (2)
C6—C7—C8—C9−47.9 (3)C17i—C17—C18—O3i10.7 (3)
O1—C8—C9—C1455.9 (3)C16—C17—C18—C190.8 (4)
C7—C8—C9—C14172.2 (2)C17i—C17—C18—C19−162.49 (17)
C15—C8—C9—C14−64.9 (3)C17—C18—C19—O2178.8 (2)
O1—C8—C9—C10−72.5 (3)O3i—C18—C19—O25.2 (3)
C7—C8—C9—C1043.8 (3)C17—C18—C19—C202.1 (4)
C15—C8—C9—C10166.6 (2)O3i—C18—C19—C20−171.5 (2)
C2—C1—C10—C13−70.9 (3)O2—C19—C20—C21−177.3 (2)
C2—C1—C10—C552.7 (3)C18—C19—C20—C21−0.6 (4)
C2—C1—C10—C9168.9 (2)C8—O1—C21—C1628.2 (3)
C6—C5—C10—C13−64.4 (3)C8—O1—C21—C20−150.7 (2)
C4—C5—C10—C1369.2 (3)C17—C16—C21—O1−172.3 (2)
C6—C5—C10—C1174.4 (2)C14—C16—C21—O12.3 (4)
C4—C5—C10—C1−52.0 (3)C17—C16—C21—C206.5 (4)
C6—C5—C10—C958.5 (3)C14—C16—C21—C20−178.9 (2)
C4—C5—C10—C9−167.9 (2)C19—C20—C21—O1175.1 (2)
C14—C9—C10—C13−51.7 (3)C19—C20—C21—C16−3.7 (4)
C8—C9—C10—C1375.9 (3)

Symmetry codes: (i) −y+1, −x+1, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.95 (4)2.16 (4)2.753 (3)120 (3)

Symmetry codes: (i) −y+1, −x+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2164).

References

  • Alvarez-Manzaneda, E. J., Chahboun, R., Barranco Pérez, I., Cabrera, E., Alvarez, E. & Alvarez-Manzaneda, R. (2005). Org. Lett.7, 1477–1480. [PubMed]
  • Alvarez-Manzaneda, E. J., Chahboun, R., Cabrera, E., Alvarez, E., Haidour, A., Ramos, J. M., Alvarez-Manzaneda, R., Hmamouchi, M. & Bouanou, H. (2007). J. Org. Chem.72, 3332–3339. [PubMed]
  • Amade, P., Chevelot, L., Perzanowski, H. P. & Scheuer, P. J. (1983). Helv. Chim. Acta, 66, 1672–1675.
  • Barrero, A. F., Alvarez-Manzaneda, E. J., Herrador, M. M., Valdivia, M. V. & Chahboun, R. (1998). Tetrahedron, 39, 2425–2428.
  • Barrero, A. F., Alvarez-Miranda, E. J., Chahboun, R., Cortés, M. & Armstrong, V. (1999). Tetrahedron, 55, 15181–15208.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Castro, M. E., González-Iriarte, M., Barrero, A. F., Salvador-Tormo, N., Muñoz-Chápuli, R., Medina, M. A. & Quesada, A. R. (2004). Int. J. Cancer, 20, 31–38. [PubMed]
  • Ciavatta, M. L., Lopez Gresa, M. P., Gavagnin, M., Romero, V., Melck, D., Manzo, E., Guo, Y.-W., van Soest, R. & Cimino, G. (2007). Tetrahedron, 63, 1380–1384.
  • Hamann, M. T. (2003). Curr. Pharm. Des.9, 879–889. [PubMed]
  • Kohmoto, S., McConnell, O. J., Wright, A., Koehn, F., Thompson, W., Lui, M. & Snader, K. M. (1987). J. Nat. Prod.50, 336–336. [PubMed]
  • Longley, R. E., McConnell, O. J., Essich, E. & Harmody, D. (1993). J. Nat. Prod.56, 915–920. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Takamatsu, S., Hodges, T. W., Rajbhandari, I., Gerwick, W. H., Hamann, M. T. & Nagle, D. G. (2003). J. Nat. Prod.66, 605–608. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography