PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m731.
Published online 2008 April 30. doi:  10.1107/S1600536808010040
PMCID: PMC2961167

Aqua­[N-(1-naphth­yl)acetamido-κN]bis­[2-(2-pyrid­yl)phenyl-κ2 N,C 1]iridium(III) ethyl­ene glycol hemisolvate

Abstract

In the title compound, [Ir(C11H8N)2(C12H10NO)(H2O)]·0.5C2H6O2, the iridium center is coordinated by two N atoms and two C atoms from two 2-(2-pyrid­yl)phenyl (ppy) ligands, one N atom from the N-(1-naphth­yl)acetamide ligand and one water O atom, forming a distorted octa­hedral environment. Mol­ecules are linked by inter­molecular O—H(...)O hydrogen bonds formed by the coordinated water mol­ecule and the amide O atom of the N-(1-naphth­yl)acetamide ligands.

Related literature

For related literature, see: Adachi et al. (2000 [triangle]); Lamansky et al. (2001 [triangle]); Beeby et al. (2003 [triangle]); You & Park (2005 [triangle]); Baldo et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m731-scheme1.jpg

Experimental

Crystal data

  • [Ir(C11H8N)2(C12H10NO)(H2O)]·0.5C2H6O2
  • M r = 733.83
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m731-efi1.jpg
  • a = 10.097 (4) Å
  • b = 10.888 (4) Å
  • c = 14.453 (5) Å
  • α = 95.580 (7)°
  • β = 92.940 (7)°
  • γ = 107.423 (6)°
  • V = 1503.4 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.48 mm−1
  • T = 273 (2) K
  • 0.12 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.615, T max = 0.775
  • 7940 measured reflections
  • 5269 independent reflections
  • 4451 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.093
  • S = 1.00
  • 5269 reflections
  • 381 parameters
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010040/sg2232sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010040/sg2232Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20571033) and by the Program for New Century Excellent Talents in Universities (NCET-06–0483).

supplementary crystallographic information

Comment

Since the initial work by Thompson and Forrest (Baldo et al., 1998), there have been considerable attention focused on designing homoleptic Ir triscyclometalates (CÑ)3Ir and heteroleptic Ir complexes (CÑ)2Ir(LX) for their application in organic light emitting diodes (OLEDs), where CÑ is a general abbreviation used hereafter for a cyclometalating ligand and LX is an ancillary ligand. (CÑ)2Ir(LX) complexes, containing cyclometalating ligands 2-pyridylphenyl, have already been incorporated with different kinds of ancillary ligands, such as β-diketonate, 2-picolinic acid, to exploit their potential application in OLEDs. (Adachi et al., 2000; Lamansky et al., 2001; Beeby et al., 2003; You & Park, 2005). However, among all the ancillary lignads used in (CÑ)2Ir(LX) complexes, N-(1-naphthyl)acetamide has never been studied..

In this paper, we report the crystal structure of (CÑ)2Ir(LX) with N-(1-naphthyl)acetamide as ancillary ligand, it is a solvated neutral mononuclear [Ir(ppy)2(N-acetyl-1-naphthylamino)(H2O)] (ppy=2-pyridylphenyl) complex. The Ir atom has a distorted octahedral geometry involving two ppy ligands, one N-(1-naphthyl)acetamide ligand and one water molecule.The average bond lengthes from two N atoms and two C atoms in two ppy ligands to iridium center are Ir—Nav = 2.048Å and Ir—Cav = 1.987Å respectively, the bond lengthes from N atom in the N-acetylnaphthylamine ligand and the O atom in aqua to Ir atom are Ir—N=2.217 (5)Å and Ir—O= 2.219 (4).(Table 1).

The molecules of the title complexes are linked by O—H···O intermolecule hydrogen bonds formed by the coordinated water molecules and amido O atom of the N-acetyl-1-naphthylamino ligands.(Fig. 2.)

Experimental

0.107 g [(ppy)2IrCl]2 (1 eq.) and 0.047 g (2.5 eq.) N-(1-naphthyl)acetamide were dissolved in dichlomethane, 0.054 g sodium methanol(10eq.) then added to the mixture to neutralize the hydrochloric acid that produced in the reaction. The reaction was stirred at room temperature for 24 h. After the reaction, the solvent was removed and the residua was washed with hot water and ether. The crude product was separated by chromatography on silica gel with dichloromethane as eluent to give a yellow solid. Single crystals suitable for X-ray diffraction were grown by slow diffusion of ethylene glycol solution.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene), and refined using a riding model with Uiso(H) = 1.2Ueq(C,N). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å; and with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
The structure of (1) showing the atomic numbering scheme and octahedral coordination of Ir(III). Non-H atoms are shown with the 30% probability displacement ellipsoids.
Fig. 2.
The crystal packing of (1).The intermolecluar hydrogen bonds are shown as dashed lines.

Crystal data

[Ir(C11H8N)2(C12H10NO)(H2O1)]·0.5C2H6O2Z = 2
Mr = 733.83F000 = 726
Triclinic, P1Dx = 1.621 Mg m3
a = 10.097 (4) ÅMo Kα radiation λ = 0.71073 Å
b = 10.888 (4) ÅCell parameters from 2801 reflections
c = 14.453 (5) Åθ = 2.3–22.3º
α = 95.580 (7)ºµ = 4.48 mm1
β = 92.940 (7)ºT = 273 (2) K
γ = 107.423 (6)ºBlock, green
V = 1503.4 (10) Å30.12 × 0.10 × 0.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer5269 independent reflections
Radiation source: fine-focus sealed tube4451 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 273(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→12
Tmin = 0.615, Tmax = 0.775k = −12→12
7940 measured reflectionsl = −17→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.093  w = 1/[σ2(Fo2) + (0.05P)2 + 0.001P]
S = 1.00(Δ/σ)max = 0.004
5269 reflectionsΔρmax = 0.74 e Å3
381 parametersΔρmin = −0.90 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ir10.13408 (3)0.89887 (2)0.175881 (18)0.03749 (11)
O10.1828 (5)1.1138 (5)0.0220 (4)0.0639 (15)
O2−0.0027 (5)1.0120 (4)0.1312 (3)0.0525 (12)
H370.05501.03510.09060.063*
H36−0.07670.96410.09980.063*
O30.9250 (19)0.519 (2)0.6241 (11)0.287 (10)
H30.99130.51730.65860.431*
N10.3081 (5)1.0563 (5)0.1332 (4)0.0443 (14)
N20.1680 (6)0.9878 (5)0.3092 (4)0.0425 (13)
N30.0900 (6)0.7881 (5)0.0484 (4)0.0461 (14)
C10.4217 (8)1.2363 (8)0.0431 (6)0.068 (2)
H1A0.40891.2499−0.02100.102*
H1B0.50471.21180.05250.102*
H1C0.43031.31490.08260.102*
C20.2964 (7)1.1287 (6)0.0672 (5)0.0473 (17)
C30.4419 (8)1.0810 (8)0.1841 (6)0.059 (2)
C40.5249 (8)1.0024 (8)0.1629 (6)0.068 (2)
H40.49750.94130.11040.082*
C50.6484 (9)1.0104 (12)0.2166 (9)0.096 (4)
H50.70110.95570.20100.116*
C60.6883 (11)1.1041 (14)0.2944 (9)0.106 (5)
H60.76891.11160.33160.127*
C70.6075 (9)1.1888 (10)0.3179 (6)0.073 (3)
C80.4834 (8)1.1748 (8)0.2611 (5)0.059 (2)
C90.4042 (10)1.2587 (8)0.2848 (6)0.068 (2)
H90.32251.25300.24960.081*
C100.4520 (13)1.3486 (10)0.3613 (7)0.104 (4)
H100.40201.40520.37820.125*
C110.5746 (15)1.3572 (13)0.4147 (8)0.115 (5)
H110.60391.41910.46670.138*
C120.6483 (12)1.2812 (13)0.3937 (8)0.099 (4)
H120.72951.28940.43050.119*
C130.1079 (8)1.0713 (7)0.3443 (5)0.0556 (19)
H130.04781.09680.30490.067*
C140.1302 (10)1.1234 (8)0.4373 (6)0.071 (2)
H140.08541.18220.45950.085*
C150.2177 (10)1.0875 (9)0.4957 (6)0.074 (3)
H150.23481.12180.55820.089*
C160.2797 (9)1.0009 (9)0.4610 (6)0.069 (2)
H160.34010.97580.50030.082*
C170.2551 (7)0.9484 (7)0.3676 (5)0.0512 (19)
C180.3088 (7)0.8496 (7)0.3221 (5)0.0519 (19)
C190.4038 (8)0.7965 (9)0.3665 (6)0.066 (2)
H190.43680.82490.42850.079*
C200.4466 (9)0.7041 (9)0.3180 (8)0.081 (3)
H200.51000.67020.34690.097*
C210.3967 (9)0.6599 (8)0.2261 (7)0.074 (3)
H210.42550.59540.19400.089*
C220.3047 (8)0.7107 (7)0.1820 (6)0.0573 (19)
H220.27240.67940.12020.069*
C230.2586 (7)0.8065 (6)0.2264 (5)0.0430 (16)
C240.1684 (8)0.8064 (7)−0.0248 (5)0.0557 (19)
H240.24910.8768−0.01920.067*
C250.1343 (11)0.7259 (8)−0.1069 (6)0.073 (3)
H250.19240.7396−0.15530.088*
C260.0123 (12)0.6241 (8)−0.1167 (7)0.085 (3)
H26−0.01400.5683−0.17200.102*
C27−0.0684 (10)0.6070 (8)−0.0442 (6)0.074 (3)
H27−0.15160.5393−0.05080.089*
C28−0.0306 (8)0.6881 (7)0.0407 (5)0.0534 (19)
C29−0.1027 (7)0.6709 (6)0.1252 (5)0.0500 (18)
C30−0.2245 (8)0.5705 (7)0.1320 (7)0.062 (2)
H30−0.26960.51510.07920.074*
C31−0.2773 (8)0.5542 (8)0.2165 (7)0.072 (3)
H31−0.35830.48710.22120.087*
C32−0.2111 (8)0.6368 (8)0.2951 (7)0.070 (2)
H32−0.24680.62400.35270.083*
C33−0.0919 (8)0.7385 (7)0.2885 (6)0.059 (2)
H33−0.05010.79470.34180.071*
C34−0.0326 (6)0.7588 (6)0.2036 (5)0.0426 (16)
C350.9687 (19)0.537 (2)0.5300 (13)0.197 (10)
H35A0.88600.53900.49360.237*
H35B1.03220.62490.53570.237*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ir10.03596 (15)0.03611 (15)0.03817 (16)0.00916 (10)−0.00124 (10)0.00195 (10)
O10.057 (3)0.066 (3)0.067 (4)0.013 (3)−0.012 (3)0.025 (3)
O20.048 (3)0.057 (3)0.057 (3)0.024 (2)−0.001 (2)0.004 (2)
O30.33 (2)0.33 (2)0.175 (13)0.053 (18)−0.046 (15)0.122 (15)
N10.039 (3)0.044 (3)0.046 (3)0.009 (2)−0.004 (3)0.004 (3)
N20.042 (3)0.038 (3)0.043 (3)0.007 (2)0.004 (3)0.000 (3)
N30.048 (3)0.039 (3)0.048 (4)0.012 (3)−0.007 (3)0.001 (3)
C10.068 (5)0.064 (5)0.062 (5)0.001 (4)0.003 (4)0.018 (4)
C20.047 (4)0.040 (4)0.051 (4)0.009 (3)0.007 (3)0.002 (3)
C30.048 (4)0.060 (5)0.058 (5)−0.001 (4)0.000 (4)0.016 (4)
C40.056 (5)0.071 (6)0.084 (6)0.021 (4)0.022 (5)0.023 (5)
C50.048 (5)0.131 (10)0.125 (10)0.031 (6)0.018 (6)0.069 (8)
C60.057 (6)0.158 (12)0.088 (8)−0.007 (7)−0.003 (6)0.069 (8)
C70.047 (5)0.094 (7)0.059 (6)−0.013 (5)−0.006 (4)0.029 (5)
C80.051 (4)0.068 (5)0.044 (5)−0.007 (4)0.001 (4)0.019 (4)
C90.075 (6)0.055 (5)0.057 (5)−0.002 (4)0.014 (4)0.000 (4)
C100.129 (9)0.087 (7)0.056 (6)−0.025 (7)0.005 (6)−0.001 (5)
C110.131 (12)0.105 (10)0.056 (7)−0.035 (8)−0.007 (7)0.000 (6)
C120.086 (8)0.115 (10)0.067 (8)−0.009 (7)−0.010 (6)0.015 (7)
C130.052 (4)0.053 (4)0.055 (5)0.007 (4)0.008 (4)0.000 (4)
C140.082 (6)0.064 (5)0.059 (6)0.014 (5)0.022 (5)−0.006 (4)
C150.086 (7)0.073 (6)0.051 (5)0.009 (5)0.011 (5)−0.007 (5)
C160.070 (6)0.081 (6)0.041 (5)0.003 (5)−0.006 (4)0.002 (4)
C170.045 (4)0.055 (4)0.045 (4)0.000 (3)0.000 (3)0.012 (4)
C180.041 (4)0.056 (4)0.053 (5)0.004 (3)−0.003 (3)0.013 (4)
C190.052 (5)0.080 (6)0.062 (5)0.012 (4)−0.009 (4)0.030 (5)
C200.067 (6)0.083 (7)0.108 (8)0.041 (5)−0.004 (6)0.034 (6)
C210.075 (6)0.060 (5)0.099 (8)0.034 (5)0.002 (5)0.020 (5)
C220.058 (5)0.056 (5)0.061 (5)0.022 (4)0.005 (4)0.006 (4)
C230.036 (3)0.033 (3)0.054 (4)0.001 (3)0.001 (3)0.005 (3)
C240.069 (5)0.055 (5)0.042 (4)0.017 (4)0.009 (4)0.004 (4)
C250.122 (8)0.061 (5)0.044 (5)0.037 (5)0.011 (5)0.006 (4)
C260.140 (10)0.052 (5)0.058 (6)0.028 (6)−0.011 (6)−0.008 (4)
C270.087 (6)0.061 (5)0.061 (6)0.009 (5)−0.015 (5)−0.005 (4)
C280.062 (5)0.044 (4)0.050 (5)0.015 (4)−0.013 (4)0.000 (3)
C290.043 (4)0.040 (4)0.063 (5)0.008 (3)0.000 (4)0.000 (3)
C300.045 (4)0.051 (5)0.081 (6)0.004 (4)−0.004 (4)0.003 (4)
C310.050 (5)0.051 (5)0.107 (8)−0.002 (4)0.019 (5)0.021 (5)
C320.055 (5)0.070 (6)0.087 (7)0.016 (4)0.029 (5)0.022 (5)
C330.049 (4)0.052 (4)0.074 (6)0.012 (4)0.016 (4)0.000 (4)
C340.031 (3)0.049 (4)0.054 (4)0.022 (3)0.006 (3)0.007 (3)
C350.17 (2)0.18 (2)0.23 (3)0.073 (13)−0.10 (2)−0.035 (17)

Geometric parameters (Å, °)

Ir1—C231.982 (7)C13—H130.9300
Ir1—C341.993 (7)C14—C151.356 (12)
Ir1—N12.217 (5)C14—H140.9300
Ir1—N22.035 (6)C15—C161.351 (12)
Ir1—N32.052 (6)C15—H150.9300
Ir1—O22.219 (4)C16—C171.393 (10)
O1—C21.249 (8)C16—H160.9300
O2—H370.8500C17—C181.459 (11)
O2—H360.8500C18—C191.417 (10)
O3—C351.47 (2)C18—C231.432 (10)
O3—H30.8200C19—C201.358 (12)
N1—C21.318 (8)C19—H190.9300
N1—C31.443 (9)C20—C211.381 (13)
N2—C131.313 (9)C20—H200.9300
N2—C171.374 (9)C21—C221.375 (10)
N3—C241.348 (9)C21—H210.9300
N3—C281.360 (9)C22—C231.382 (10)
C1—C21.527 (10)C22—H220.9300
C1—H1A0.9600C24—C251.368 (10)
C1—H1B0.9600C24—H240.9300
C1—H1C0.9600C25—C261.378 (13)
C3—C81.389 (11)C25—H250.9300
C3—C41.390 (11)C26—C271.354 (13)
C4—C51.411 (12)C26—H260.9300
C4—H40.9300C27—C281.403 (11)
C5—C61.397 (16)C27—H270.9300
C5—H50.9300C28—C291.453 (11)
C6—C71.432 (16)C29—C301.394 (10)
C6—H60.9300C29—C341.415 (9)
C7—C121.368 (14)C30—C311.363 (12)
C7—C81.423 (11)C30—H300.9300
C8—C91.413 (12)C31—C321.382 (12)
C9—C101.365 (12)C31—H310.9300
C9—H90.9300C32—C331.386 (10)
C10—C111.399 (16)C32—H320.9300
C10—H100.9300C33—C341.401 (10)
C11—C121.293 (16)C33—H330.9300
C11—H110.9300C35—C35i1.426 (18)
C12—H120.9300C35—H35A0.9700
C13—C141.388 (11)C35—H35B0.9700
C23—Ir1—C3490.5 (2)C15—C14—C13119.3 (9)
C23—Ir1—N281.7 (3)C15—C14—H14120.3
C34—Ir1—N293.3 (3)C13—C14—H14120.3
C23—Ir1—N394.7 (3)C16—C15—C14118.5 (8)
C34—Ir1—N380.7 (3)C16—C15—H15120.8
N2—Ir1—N3172.9 (2)C14—C15—H15120.8
C23—Ir1—N193.8 (2)C15—C16—C17121.5 (8)
C34—Ir1—N1174.7 (2)C15—C16—H16119.2
N2—Ir1—N190.5 (2)C17—C16—H16119.2
N3—Ir1—N195.8 (2)N2—C17—C16119.1 (8)
C23—Ir1—O2175.1 (2)N2—C17—C18113.6 (6)
C34—Ir1—O289.9 (2)C16—C17—C18127.3 (7)
N2—Ir1—O293.5 (2)C19—C18—C23120.1 (8)
N3—Ir1—O290.2 (2)C19—C18—C17124.4 (7)
N1—Ir1—O286.04 (19)C23—C18—C17115.5 (6)
Ir1—O2—H3785.0C20—C19—C18119.8 (8)
Ir1—O2—H36112.0C20—C19—H19120.1
H37—O2—H36104.4C18—C19—H19120.1
C35—O3—H3109.5C19—C20—C21120.6 (8)
C2—N1—C3118.9 (6)C19—C20—H20119.7
C2—N1—Ir1124.8 (4)C21—C20—H20119.7
C3—N1—Ir1116.3 (4)C22—C21—C20120.3 (9)
C13—N2—C17118.6 (6)C22—C21—H21119.8
C13—N2—Ir1125.8 (5)C20—C21—H21119.8
C17—N2—Ir1115.4 (5)C21—C22—C23122.3 (8)
C24—N3—C28119.5 (6)C21—C22—H22118.9
C24—N3—Ir1126.1 (5)C23—C22—H22118.9
C28—N3—Ir1114.3 (5)C22—C23—C18116.9 (6)
C2—C1—H1A109.5C22—C23—Ir1129.3 (6)
C2—C1—H1B109.5C18—C23—Ir1113.8 (5)
H1A—C1—H1B109.5N3—C24—C25122.8 (8)
C2—C1—H1C109.5N3—C24—H24118.6
H1A—C1—H1C109.5C25—C24—H24118.6
H1B—C1—H1C109.5C24—C25—C26118.8 (9)
O1—C2—N1121.9 (6)C24—C25—H25120.6
O1—C2—C1116.8 (6)C26—C25—H25120.6
N1—C2—C1121.3 (6)C27—C26—C25118.6 (9)
C8—C3—C4118.9 (8)C27—C26—H26120.7
C8—C3—N1120.5 (8)C25—C26—H26120.7
C4—C3—N1120.4 (7)C26—C27—C28122.1 (8)
C3—C4—C5123.5 (10)C26—C27—H27118.9
C3—C4—H4118.2C28—C27—H27118.9
C5—C4—H4118.2N3—C28—C27118.1 (8)
C6—C5—C4117.1 (11)N3—C28—C29115.4 (6)
C6—C5—H5121.4C27—C28—C29126.3 (7)
C4—C5—H5121.4C30—C29—C34121.9 (7)
C5—C6—C7121.3 (10)C30—C29—C28123.7 (7)
C5—C6—H6119.4C34—C29—C28114.2 (6)
C7—C6—H6119.4C31—C30—C29119.7 (8)
C12—C7—C8120.5 (11)C31—C30—H30120.2
C12—C7—C6120.8 (10)C29—C30—H30120.2
C8—C7—C6118.6 (10)C30—C31—C32120.4 (7)
C3—C8—C9121.2 (7)C30—C31—H31119.8
C3—C8—C7120.5 (9)C32—C31—H31119.8
C9—C8—C7118.3 (9)C31—C32—C33120.2 (8)
C10—C9—C8117.7 (10)C31—C32—H32119.9
C10—C9—H9121.2C33—C32—H32119.9
C8—C9—H9121.2C32—C33—C34121.6 (8)
C9—C10—C11121.4 (13)C32—C33—H33119.2
C9—C10—H10119.3C34—C33—H33119.2
C11—C10—H10119.3C33—C34—C29116.2 (6)
C12—C11—C10121.7 (12)C33—C34—Ir1129.1 (5)
C12—C11—H11119.2C29—C34—Ir1114.7 (5)
C10—C11—H11119.2C35i—C35—O3130 (3)
C11—C12—C7120.5 (12)C35i—C35—H35A104.8
C11—C12—H12119.8O3—C35—H35A104.8
C7—C12—H12119.8C35i—C35—H35B104.8
N2—C13—C14122.9 (8)O3—C35—H35B104.8
N2—C13—H13118.5H35A—C35—H35B105.8
C14—C13—H13118.5

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H36···O1ii0.851.982.756 (7)150
O2—H36···O1ii0.851.982.756 (7)150

Symmetry codes: (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2232).

References

  • Adachi, C., Baldo, M. A., Forrest, S. R. & Thompson, M. E. (2000). Appl. Phys. Lett.77, 904–906.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151–154.
  • Beeby, A., Bettington, S., Samuel, I. D. W. & Wang, Z. (2003). J. Mater. Chem.13, 80–83.
  • Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Lamansky, S., Djurovich, P., Murphy, D. & Abdel-Razzaq, F. (2001). J. Am. Chem. Soc.123, 4304–4312. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc.127, 12438–12439. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography