PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o854.
Published online 2008 April 16. doi:  10.1107/S1600536808005990
PMCID: PMC2961166

Methyl 9H-xanthene-9-carboxyl­ate

Abstract

The title compound, C15H12O3, was obtained unintentionally as the by-product of an attempted recrystallization from methanol of propantheline bromide, an anti­muscarinic drug. The xanthone unit is folded, with a dihedral angle of 24.81 (9)° between the benzene rings. The ester substituent adopts a trans staggered conformation, with a C—C—O—C torsion angle of 178.4 (1)°. The mol­ecules pack in distinct layers, facilitated by C—H(...)π and weak π–π ring inter­actions. A weak C—H(...)O inter­action also occurs; however, no classical hydrogen bonding is observed.

Related literature

For details of the first spectroscopic evidence of the trans­esterification of propantheline bromide by methanol to 9H-xanthene-9-carboxylic acid methyl ester, see: Avdovich et al. (1986 [triangle]). For a description of the comparative effectiveness of propantheline bromide for the treatment of neurogenic detrusor overactivity, see: George et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o854-scheme1.jpg

Experimental

Crystal data

  • C15H12O3
  • M r = 240.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o854-efi1.jpg
  • a = 25.6601 (16) Å
  • b = 5.7624 (3) Å
  • c = 15.7578 (9) Å
  • β = 92.933 (4)°
  • V = 2327.0 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 123 (2) K
  • 0.50 × 0.50 × 0.50 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.932, T max = 0.954
  • 11906 measured reflections
  • 2672 independent reflections
  • 1985 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.106
  • S = 1.05
  • 2672 reflections
  • 166 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: POV-RAY for Windows (Persistence of Vision, 1999 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
Geometrical parameters (Å, °) of the inter-ring π—π interactions

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005990/wn2242sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005990/wn2242Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PMD is grateful to Monash University for the Monash Graduate Scholarship and Monash International Postgraduate Research Scholarship, and to Monash University, School of Chemistry for funding for JT.

supplementary crystallographic information

Comment

It was found that propantheline bromide (George et al., 2007) undergoes facile transesterification by methanol to produce the by-product 9H-xanthene-9-carboxylic acid methyl ester (Avdovich et al., 1986). Surprisingly, the structural elucidation of this analogue (Fig. 1) has not been reported in the literature until now. Now the structural determination and analysis is briefly described.

The xanthone unit is bent, with the aromatic planes oriented to each other by an interplanar angle of 24.81 (9)°. The ester substituent adopts a trans staggered conformation with a C7—C14—O3—C15 torsion angle of 178.4 (1)°. Additionally, as is typical of an ester, the O3—C14 distance is 1.326 (2) Å and the O3—C15 distance is 1.448 (2) Å, indicating the sp2 hybridization of C14.

The overall packing is shown in Fig. 2. Molecules are related by centres of symmetry, resulting in a head-to-head arrangement, that packs in aromatic and non-aromatic layers lying parallel to the (100) plane. Fig. 2 displays the orientation of the molecules, facilitating the weak C—H···O hydrogen bonding between the methyl and carbonyl groups (distance: C15—H15C···O2i (i = x,y - 1,z) 3.407 (2) Å - see Table 1) and the C—H···π and weak π···π ring interactions (Table 2). A short range contact, 2.683 (2) Å, also occurs between the aromatic C4—H4 and the carbonyl oxygen O2 (distance: C4—H4···O2ii (ii = x,1 - y,-1/2 + z).

Experimental

The title compound was obtained unintentionally as the product of an attempted recrystallization of propantheline bromide (50 mg) in methanol (2 ml) at room temperature. Crystals resulted after 6 days; these were coated with Paratone N oil (Exxon Chemical Co., TX, USA) immediately after isolation and cooled in a stream of nitrogen vapour on the diffractometer. Melting point: 360.7 K.

Refinement

All H atoms were observed in difference syntheses and were then placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å. Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other C atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms as spheres of arbitrary radius.
Fig. 2.
A ball-and-stick representation of the unit-cell contents, viewed down the b axis.

Crystal data

C15H12O3F000 = 1008
Mr = 240.25Dx = 1.372 Mg m3
Monoclinic, C2/cMelting point: 360.7 K
Hall symbol: -C 2ycMo Kα radiation λ = 0.71073 Å
a = 25.6601 (16) ÅCell parameters from 1829 reflections
b = 5.7624 (3) Åθ = 2.6–25.8º
c = 15.7578 (9) ŵ = 0.10 mm1
β = 92.933 (4)ºT = 123 (2) K
V = 2327.0 (2) Å3Prismatic, colourless
Z = 80.50 × 0.50 × 0.50 mm

Data collection

Bruker KappaAPEXII diffractometer2672 independent reflections
Radiation source: fine-focus sealed tube1985 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.050
T = 123(2) Kθmax = 27.5º
0.5° frames in [var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −33→33
Tmin = 0.932, Tmax = 0.954k = −7→7
11906 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.106  w = 1/[σ2(Fo2) + (0.0212P)2 + 2.7981P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2672 reflectionsΔρmax = 0.20 e Å3
166 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.33199 (5)−0.0433 (2)0.46758 (8)0.0291 (4)
O30.44741 (5)0.1331 (2)0.55663 (8)0.0317 (4)
C10.35919 (6)0.0509 (3)0.40209 (11)0.0246 (4)
O20.46182 (5)0.5104 (2)0.57999 (10)0.0460 (5)
C50.41061 (7)0.3418 (3)0.33969 (11)0.0296 (5)
H50.42850.48600.34320.036*
C80.34065 (6)0.3209 (3)0.54356 (11)0.0270 (5)
C140.43644 (7)0.3568 (3)0.54706 (11)0.0269 (4)
C90.32151 (7)0.4651 (4)0.60572 (11)0.0340 (5)
H90.33740.61170.61660.041*
C40.40994 (7)0.2167 (4)0.26464 (12)0.0344 (5)
H40.42750.27440.21740.041*
C20.35812 (7)−0.0765 (3)0.32741 (11)0.0296 (5)
H20.3400−0.22020.32360.036*
C120.27490 (7)0.0372 (4)0.57561 (11)0.0320 (5)
H120.2591−0.10990.56530.038*
C100.27969 (7)0.3977 (4)0.65182 (12)0.0404 (6)
H100.26680.49830.69360.048*
C110.25674 (7)0.1837 (4)0.63695 (12)0.0383 (6)
H110.22820.13690.66910.046*
C30.38359 (7)0.0071 (4)0.25876 (12)0.0336 (5)
H30.3831−0.07920.20740.040*
C60.38552 (6)0.2600 (3)0.41010 (11)0.0255 (4)
C70.38629 (7)0.3930 (3)0.49288 (11)0.0265 (5)
H70.38280.56220.47960.032*
C130.31655 (6)0.1086 (3)0.52950 (11)0.0266 (4)
C150.49380 (7)0.0797 (4)0.60921 (12)0.0349 (5)
H15A0.49110.15050.66540.052*
H15B0.52450.14150.58250.052*
H15C0.4972−0.08890.61540.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0329 (7)0.0252 (7)0.0294 (7)0.0015 (5)0.0027 (5)−0.0008 (5)
O30.0293 (7)0.0257 (7)0.0385 (8)0.0029 (6)−0.0121 (5)−0.0011 (6)
C10.0234 (8)0.0252 (10)0.0251 (9)0.0051 (7)−0.0011 (7)−0.0002 (7)
O20.0419 (8)0.0328 (8)0.0611 (10)−0.0017 (7)−0.0166 (7)−0.0116 (7)
C50.0264 (9)0.0298 (10)0.0324 (10)0.0028 (8)−0.0027 (7)0.0057 (8)
C80.0260 (9)0.0296 (10)0.0248 (9)0.0088 (7)−0.0044 (7)−0.0016 (7)
C140.0281 (9)0.0249 (10)0.0276 (9)0.0000 (8)0.0010 (7)−0.0043 (8)
C90.0329 (10)0.0396 (12)0.0284 (10)0.0133 (9)−0.0089 (8)−0.0074 (8)
C40.0309 (10)0.0457 (13)0.0267 (10)0.0086 (9)0.0019 (7)0.0050 (9)
C20.0288 (9)0.0280 (10)0.0314 (10)0.0060 (8)−0.0048 (7)−0.0042 (8)
C120.0286 (9)0.0384 (11)0.0285 (10)0.0052 (8)−0.0038 (7)0.0087 (8)
C100.0360 (10)0.0603 (15)0.0245 (10)0.0203 (10)−0.0028 (8)−0.0072 (9)
C110.0298 (10)0.0604 (15)0.0246 (10)0.0124 (10)0.0005 (7)0.0091 (9)
C30.0321 (10)0.0426 (12)0.0254 (10)0.0111 (9)−0.0044 (7)−0.0061 (8)
C60.0248 (8)0.0244 (10)0.0267 (9)0.0050 (7)−0.0040 (7)0.0002 (7)
C70.0310 (9)0.0204 (9)0.0277 (9)0.0051 (7)−0.0037 (7)−0.0015 (7)
C130.0279 (9)0.0303 (10)0.0210 (9)0.0082 (8)−0.0030 (7)0.0017 (7)
C150.0261 (9)0.0417 (12)0.0361 (11)0.0036 (8)−0.0071 (8)0.0010 (9)

Geometric parameters (Å, °)

O1—C131.384 (2)C4—C31.385 (3)
O1—C11.386 (2)C4—H40.9500
O3—C141.326 (2)C2—C31.379 (3)
O3—C151.448 (2)C2—H20.9500
C1—C61.384 (2)C12—C111.382 (3)
C1—C21.386 (2)C12—C131.385 (2)
O2—C141.201 (2)C12—H120.9500
C5—C41.384 (3)C10—C111.381 (3)
C5—C61.393 (2)C10—H100.9500
C5—H50.9500C11—H110.9500
C8—C131.384 (3)C3—H30.9500
C8—C91.393 (2)C6—C71.512 (2)
C8—C71.509 (2)C7—H71.0000
C14—C71.522 (2)C15—H15A0.9800
C9—C101.382 (3)C15—H15B0.9800
C9—H90.9500C15—H15C0.9800
C13—O1—C1116.79 (14)C11—C10—H10120.1
C14—O3—C15115.78 (14)C9—C10—H10120.1
C6—C1—O1122.37 (15)C10—C11—C12120.52 (18)
C6—C1—C2121.80 (16)C10—C11—H11119.7
O1—C1—C2115.83 (16)C12—C11—H11119.7
C4—C5—C6121.21 (18)C2—C3—C4120.11 (17)
C4—C5—H5119.4C2—C3—H3119.9
C6—C5—H5119.4C4—C3—H3119.9
C13—C8—C9117.98 (17)C1—C6—C5117.73 (16)
C13—C8—C7120.76 (15)C1—C6—C7120.31 (16)
C9—C8—C7121.26 (17)C5—C6—C7121.95 (16)
O2—C14—O3124.06 (17)C8—C7—C6109.91 (15)
O2—C14—C7124.42 (16)C8—C7—C14108.79 (14)
O3—C14—C7111.45 (15)C6—C7—C14112.80 (14)
C10—C9—C8120.9 (2)C8—C7—H7108.4
C10—C9—H9119.6C6—C7—H7108.4
C8—C9—H9119.6C14—C7—H7108.4
C5—C4—C3119.72 (18)C8—C13—O1122.03 (15)
C5—C4—H4120.1C8—C13—C12121.96 (17)
C3—C4—H4120.1O1—C13—C12116.00 (17)
C3—C2—C1119.42 (18)O3—C15—H15A109.5
C3—C2—H2120.3O3—C15—H15B109.5
C1—C2—H2120.3H15A—C15—H15B109.5
C11—C12—C13118.81 (19)O3—C15—H15C109.5
C11—C12—H12120.6H15A—C15—H15C109.5
C13—C12—H12120.6H15B—C15—H15C109.5
C11—C10—C9119.83 (18)
C13—O1—C1—C621.8 (2)C13—C8—C7—C622.5 (2)
C13—O1—C1—C2−157.71 (15)C9—C8—C7—C6−157.52 (16)
C15—O3—C14—O2−1.3 (3)C13—C8—C7—C14−101.48 (18)
C15—O3—C14—C7−178.43 (14)C9—C8—C7—C1478.5 (2)
C13—C8—C9—C100.0 (3)C1—C6—C7—C8−22.1 (2)
C7—C8—C9—C10179.99 (16)C5—C6—C7—C8157.52 (16)
C6—C5—C4—C30.5 (3)C1—C6—C7—C1499.48 (19)
C6—C1—C2—C3−0.5 (3)C5—C6—C7—C14−80.9 (2)
O1—C1—C2—C3179.03 (15)O2—C14—C7—C8−105.6 (2)
C8—C9—C10—C110.6 (3)O3—C14—C7—C871.48 (18)
C9—C10—C11—C12−0.7 (3)O2—C14—C7—C6132.14 (19)
C13—C12—C11—C100.1 (3)O3—C14—C7—C6−50.7 (2)
C1—C2—C3—C40.0 (3)C9—C8—C13—O1178.26 (15)
C5—C4—C3—C20.0 (3)C7—C8—C13—O1−1.7 (2)
O1—C1—C6—C5−178.53 (15)C9—C8—C13—C12−0.6 (3)
C2—C1—C6—C51.0 (2)C7—C8—C13—C12179.41 (16)
O1—C1—C6—C71.1 (2)C1—O1—C13—C8−21.5 (2)
C2—C1—C6—C7−179.37 (15)C1—O1—C13—C12157.43 (15)
C4—C5—C6—C1−1.0 (2)C11—C12—C13—C80.5 (3)
C4—C5—C6—C7179.39 (16)C11—C12—C13—O1−178.37 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.982.533.407 (3)149
C3—H3···Cg2ii0.952.953.668 (2)133
C11—H11···Cg1iii0.953.183.825 (2)127
C15—H15B···Cg1iv0.983.063.432 (2)104
C15—H15C···Cg1iv0.983.113.432 (2)101

Symmetry codes: (i) x, y−1, z; (ii) x, −y, z−1/2; (iii) −x+1/2, −y+1/2, −z+1; (iv) −x+1, −y, −z+1.

Table 2 Geometrical parameters (Å, °) of the inter-ring π—π interactions. α is the dihedral angle between planes I and J, CgI is the centroid of plane I and CgJ the centroid of plane J.

CgICgJCg···CgαSymmetry position of CgJ
Cg1Cg25.590 (1)59.44x,1-y,-1/2+z
Cg1Cg24.944 (1)24.811/2-x,1/2-y,1-z
Cg2Cg14.863 (1)59.44x,-y,1/2+z
Cg2Cg23.684 (1)0.031/2-x,1/2-y,1-z

Notes: Cg1 is the centroid of ring C1/C6; Cg2 is the centroid of ring C8/C13.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2242).

References

  • Avdovich, H. W., By, A. W., Ethier, J. C. & Neville, G. A. (1986). J. Forensic Sci. Soc.19, 241–249.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • George, J., Tharion, G., Richard, J., Macaden, A. S., Thomas, R. & Bhattacharji, S. (2007). The Scientific World Journal, 7, 1683–1690. [PubMed]
  • Persistence of Vision (1999). POV-RAY for Windows Persistence of Vision Development Team, Victoria, Australia.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography