PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o820.
Published online 2008 April 10. doi:  10.1107/S1600536808008520
PMCID: PMC2961158

2,6-Bis(3-phenyl-1H-pyrazol-5-yl)pyridine monohydrate

Abstract

In the title compound, C23H17N5·H2O, the pyrazole rings are slightly twisted from the central pyridine ring, forming dihedral angles of 5.3 (2) and 3.5 (2)°. The pyrazole and phenyl rings on each side of the pyridine ring are also approximately coplanar, making dihedral angles of 6.0 (2) and 4.5 (2)°. In the crystal structure, 2,6-bis­(3-phenyl-1H-pyrazol-5-yl)pyridine and water mol­ecules are linked together via N—H(...)O and O—H(...)N hydrogen bonds, forming a column running parallel to the a axis.

Related literature

For general background, see: Dias & Gamage (2007 [triangle]); Zhou & Chen (2007a [triangle],b [triangle]); Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o820-scheme1.jpg

Experimental

Crystal data

  • C23H17N5·H2O
  • M r = 381.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o820-efi1.jpg
  • a = 8.0581 (17) Å
  • b = 19.975 (2) Å
  • c = 12.451 (2) Å
  • β = 98.273 (3)°
  • V = 1983.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.42 × 0.11 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002 [triangle]) T min = 0.966, T max = 0.994
  • 9869 measured reflections
  • 3513 independent reflections
  • 1796 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.159
  • S = 1.05
  • 3513 reflections
  • 271 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008520/is2276sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008520/is2276Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Pyrazolyl ligands are a kind of mutifuntional organic ligands often displaying exo-bidentate coordination mode (Dias & Gamage, 2007; Zhou & Chen, 2007a; Zhang et al., 2007). The title compound, 2,6-bis(3-phenyl-1H-pyrazol-5-yl)pyridine (hereinafter abbreviated to bppp), is a pincer-like bispyrazolyl ligand. As a kind of anionic multidentate linker, it is a suitable candidate to connect transition metals into aggregate (Zhou & Chen, 2007b).

As shown in Fig. 1, the asymmetric unit contains one bppp molecule and one water molecule, and they are linked together via N—H···O hydrogen bonds. The pyrazole rings are slightly twisted from the central pyridine ring with the dihedral angles of 5.3 (2) and 3.5 (2)°. The pyrazole and phenyl rings on each side of the molecule are also approximately coplanar with the dihedral angles of 6.0 (2) and 4.5 (2)°. Furthermore, O—H···N hydrogen bonds extend it in a one-dimensional chains running parallel to the a axis (Fig. 2). All bond lengths and angles in the title compound are normal.

Experimental

All reagents were of analytical grade and used without further purification. Bppp was prepared by the general procedure of Zhou and Chen (2007a). Bppp (36 mg, 0.1 mmol) in 20 ml of water in a sealed stainless vial was heated at 170 °C for 48 h. Cooling the vial slowly (1 °C/h) afforded colorless crystals. Analysis found: C 72.64, H 4.90, N 18.25%; calculated for C23H19N5O: C 72.42, H 5.02, N 18.36%.

Refinement

Water H atoms were located in a difference Fourier map and refined isotropically with bond and distance restraints of O—H = 0.83 (1) and H···H = 1.45 (1) Å. Other H atoms were positioned geometrically and treated as riding, with C—H = 0.93 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
A partial packing view, showing the hydrogen bonds (dashed lines).

Crystal data

C23H17N5·H2OF000 = 800
Mr = 381.43Dx = 1.277 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1722 reflections
a = 8.0581 (17) Åθ = 2.8–22.2º
b = 19.975 (2) ŵ = 0.08 mm1
c = 12.451 (2) ÅT = 298 (2) K
β = 98.273 (3)ºNeedle, colorless
V = 1983.2 (6) Å30.42 × 0.11 × 0.07 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3513 independent reflections
Radiation source: fine-focus sealed tube1796 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.077
T = 298(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2002)h = −8→9
Tmin = 0.966, Tmax = 0.994k = −22→23
9869 measured reflectionsl = −14→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159  w = 1/[σ2(Fo2) + (0.0411P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3513 reflectionsΔρmax = 0.18 e Å3
271 parametersΔρmin = −0.18 e Å3
3 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc^*^=kFc[1+0.001xFc^2^λ^3^/sin(2θ)]^-1/4^
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.1701 (3)0.11239 (13)0.7473 (2)0.0464 (7)
N20.4662 (3)0.11019 (14)0.8827 (2)0.0509 (7)
H170.39060.08250.89690.061*
N30.6177 (3)0.11540 (14)0.9425 (2)0.0510 (7)
N4−0.0667 (3)0.02481 (13)0.7985 (2)0.0489 (7)
H50.02720.02520.84130.059*
N5−0.1970 (3)−0.01481 (14)0.8133 (2)0.0535 (8)
C10.0274 (4)0.10897 (16)0.6795 (3)0.0469 (8)
C2−0.0007 (5)0.14642 (18)0.5851 (3)0.0671 (11)
H2−0.10220.14360.53920.081*
C30.1241 (5)0.1876 (2)0.5611 (3)0.0800 (13)
H30.10810.21320.49810.096*
C40.2718 (5)0.19125 (18)0.6292 (3)0.0705 (11)
H40.35800.21880.61340.085*
C50.2900 (4)0.15272 (16)0.7226 (3)0.0485 (9)
C60.4445 (4)0.15273 (16)0.7981 (3)0.0464 (8)
C70.5920 (4)0.18745 (16)0.8030 (3)0.0491 (9)
H70.61730.22080.75580.059*
C80.6966 (4)0.16260 (15)0.8935 (3)0.0459 (8)
C90.8667 (4)0.18274 (17)0.9361 (3)0.0479 (9)
C100.9428 (5)0.2353 (2)0.8903 (3)0.0759 (12)
H100.88570.25760.83060.091*
C111.1031 (6)0.2547 (2)0.9324 (4)0.0936 (15)
H111.15330.29030.90130.112*
C121.1886 (5)0.2221 (2)1.0195 (4)0.0860 (14)
H121.29720.23501.04720.103*
C131.1139 (5)0.17056 (19)1.0656 (4)0.0744 (12)
H131.17040.14921.12650.089*
C140.9565 (4)0.15005 (17)1.0232 (3)0.0607 (10)
H140.90910.11341.05350.073*
C15−0.0992 (4)0.06365 (16)0.7095 (2)0.0454 (8)
C16−0.2579 (4)0.04886 (16)0.6641 (3)0.0506 (9)
H16−0.31660.06730.60130.061*
C17−0.3159 (4)0.00052 (17)0.7303 (3)0.0474 (8)
C18−0.4788 (4)−0.03241 (18)0.7192 (3)0.0510 (9)
C19−0.6077 (4)−0.01190 (19)0.6401 (3)0.0617 (10)
H19−0.58850.02250.59300.074*
C20−0.7635 (5)−0.0415 (2)0.6298 (3)0.0717 (12)
H20−0.8480−0.02710.57590.086*
C21−0.7945 (5)−0.0916 (2)0.6984 (4)0.0772 (13)
H21−0.9002−0.11120.69190.093*
C22−0.6695 (5)−0.1130 (2)0.7767 (3)0.0756 (12)
H22A−0.6894−0.14800.82250.091*
C23−0.5147 (5)−0.0831 (2)0.7880 (3)0.0668 (11)
H23A−0.4319−0.09730.84320.080*
O10.2448 (3)0.01202 (14)0.9621 (2)0.0566 (7)
H220.216 (6)0.028 (2)1.019 (2)0.15 (2)*
H230.298 (6)−0.0242 (14)0.967 (3)0.15 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0427 (17)0.0464 (17)0.0497 (16)0.0026 (14)0.0054 (14)−0.0008 (13)
N20.0401 (18)0.0554 (18)0.0563 (17)−0.0080 (14)0.0035 (14)0.0059 (15)
N30.0378 (17)0.0568 (18)0.0577 (17)−0.0084 (14)0.0040 (14)0.0026 (14)
N40.0354 (17)0.0575 (18)0.0516 (17)−0.0011 (14)−0.0011 (13)0.0039 (14)
N50.0397 (17)0.0625 (19)0.0577 (18)−0.0063 (15)0.0048 (15)0.0025 (15)
C10.050 (2)0.041 (2)0.049 (2)0.0068 (17)0.0032 (18)−0.0019 (16)
C20.063 (3)0.059 (2)0.071 (3)−0.005 (2)−0.017 (2)0.020 (2)
C30.084 (3)0.076 (3)0.074 (3)−0.014 (3)−0.011 (3)0.035 (2)
C40.063 (3)0.067 (3)0.077 (3)−0.016 (2)−0.006 (2)0.026 (2)
C50.042 (2)0.044 (2)0.058 (2)0.0012 (17)0.0023 (18)−0.0016 (17)
C60.046 (2)0.0412 (19)0.052 (2)0.0007 (17)0.0053 (17)−0.0032 (17)
C70.052 (2)0.0403 (19)0.056 (2)−0.0025 (17)0.0114 (18)0.0037 (17)
C80.043 (2)0.039 (2)0.057 (2)−0.0035 (16)0.0130 (18)−0.0073 (16)
C90.041 (2)0.044 (2)0.060 (2)−0.0072 (16)0.0103 (18)−0.0101 (17)
C100.071 (3)0.077 (3)0.078 (3)−0.026 (2)0.004 (2)0.004 (2)
C110.085 (4)0.098 (4)0.097 (3)−0.046 (3)0.010 (3)0.010 (3)
C120.056 (3)0.080 (3)0.121 (4)−0.028 (2)0.009 (3)−0.009 (3)
C130.049 (2)0.065 (3)0.107 (3)−0.005 (2)0.001 (2)−0.006 (2)
C140.044 (2)0.048 (2)0.087 (3)−0.0069 (18)0.002 (2)0.002 (2)
C150.042 (2)0.050 (2)0.0436 (19)0.0046 (17)0.0033 (16)−0.0001 (17)
C160.045 (2)0.057 (2)0.048 (2)0.0066 (18)−0.0010 (17)0.0009 (18)
C170.038 (2)0.055 (2)0.049 (2)0.0046 (17)0.0073 (17)−0.0090 (17)
C180.044 (2)0.058 (2)0.050 (2)0.0012 (18)0.0064 (17)−0.0136 (18)
C190.044 (2)0.071 (3)0.068 (3)0.004 (2)0.001 (2)−0.015 (2)
C200.045 (3)0.086 (3)0.080 (3)0.008 (2)−0.006 (2)−0.030 (3)
C210.048 (3)0.101 (4)0.085 (3)−0.015 (2)0.019 (2)−0.034 (3)
C220.058 (3)0.096 (3)0.073 (3)−0.013 (2)0.011 (2)−0.007 (2)
C230.043 (2)0.087 (3)0.070 (3)−0.012 (2)0.006 (2)−0.004 (2)
O10.0573 (17)0.0555 (17)0.0564 (16)−0.0011 (14)0.0067 (13)0.0061 (13)

Geometric parameters (Å, °)

N1—C51.327 (4)C10—H100.9300
N1—C11.327 (4)C11—C121.364 (6)
N2—N31.339 (3)C11—H110.9300
N2—C61.344 (4)C12—C131.360 (5)
N2—H170.8600C12—H120.9300
N3—C81.333 (4)C13—C141.365 (5)
N4—C151.348 (4)C13—H130.9300
N4—N51.348 (3)C14—H140.9300
N4—H50.8600C15—C161.354 (4)
N5—C171.340 (4)C16—C171.393 (4)
C1—C21.383 (4)C16—H160.9300
C1—C151.453 (4)C17—C181.457 (4)
C2—C31.365 (5)C18—C231.383 (5)
C2—H20.9300C18—C191.387 (4)
C3—C41.360 (5)C19—C201.376 (5)
C3—H30.9300C19—H190.9300
C4—C51.385 (4)C20—C211.362 (5)
C4—H40.9300C20—H200.9300
C5—C61.448 (4)C21—C221.366 (5)
C6—C71.370 (4)C21—H210.9300
C7—C81.397 (4)C22—C231.372 (5)
C7—H70.9300C22—H22A0.9300
C8—C91.454 (4)C23—H23A0.9300
C9—C141.378 (4)O1—H220.84 (3)
C9—C101.380 (5)O1—H230.84 (4)
C10—C111.378 (5)
C5—N1—C1118.5 (3)C12—C11—H11119.8
N3—N2—C6113.1 (3)C10—C11—H11119.8
N3—N2—H17123.5C13—C12—C11119.6 (4)
C6—N2—H17123.5C13—C12—H12120.2
C8—N3—N2104.9 (3)C11—C12—H12120.2
C15—N4—N5112.7 (3)C12—C13—C14120.4 (4)
C15—N4—H5123.6C12—C13—H13119.8
N5—N4—H5123.6C14—C13—H13119.8
C17—N5—N4104.2 (3)C13—C14—C9121.1 (4)
N1—C1—C2122.2 (3)C13—C14—H14119.5
N1—C1—C15116.4 (3)C9—C14—H14119.5
C2—C1—C15121.3 (3)N4—C15—C16106.1 (3)
C3—C2—C1118.4 (4)N4—C15—C1120.6 (3)
C3—C2—H2120.8C16—C15—C1133.2 (3)
C1—C2—H2120.8C15—C16—C17106.4 (3)
C4—C3—C2120.2 (4)C15—C16—H16126.8
C4—C3—H3119.9C17—C16—H16126.8
C2—C3—H3119.9N5—C17—C16110.5 (3)
C3—C4—C5118.1 (4)N5—C17—C18120.3 (3)
C3—C4—H4120.9C16—C17—C18129.2 (3)
C5—C4—H4120.9C23—C18—C19117.0 (3)
N1—C5—C4122.6 (3)C23—C18—C17122.5 (3)
N1—C5—C6115.9 (3)C19—C18—C17120.4 (3)
C4—C5—C6121.5 (3)C20—C19—C18121.2 (4)
N2—C6—C7105.7 (3)C20—C19—H19119.4
N2—C6—C5120.7 (3)C18—C19—H19119.4
C7—C6—C5133.5 (3)C21—C20—C19120.3 (4)
C6—C7—C8106.0 (3)C21—C20—H20119.8
C6—C7—H7127.0C19—C20—H20119.8
C8—C7—H7127.0C20—C21—C22119.7 (4)
N3—C8—C7110.3 (3)C20—C21—H21120.2
N3—C8—C9121.1 (3)C22—C21—H21120.2
C7—C8—C9128.6 (3)C21—C22—C23120.2 (4)
C14—C9—C10118.1 (3)C21—C22—H22A119.9
C14—C9—C8121.1 (3)C23—C22—H22A119.9
C10—C9—C8120.8 (3)C22—C23—C18121.5 (4)
C11—C10—C9120.3 (4)C22—C23—H23A119.2
C11—C10—H10119.8C18—C23—H23A119.2
C9—C10—H10119.8H22—O1—H23118 (2)
C12—C11—C10120.4 (4)
C6—N2—N3—C8−0.7 (4)C9—C10—C11—C120.3 (7)
C15—N4—N5—C17−0.5 (3)C10—C11—C12—C13−0.8 (7)
C5—N1—C1—C2−0.7 (5)C11—C12—C13—C142.1 (7)
C5—N1—C1—C15179.4 (3)C12—C13—C14—C9−3.0 (6)
N1—C1—C2—C30.7 (6)C10—C9—C14—C132.5 (5)
C15—C1—C2—C3−179.4 (3)C8—C9—C14—C13−177.6 (3)
C1—C2—C3—C4−0.1 (6)N5—N4—C15—C160.1 (4)
C2—C3—C4—C5−0.5 (6)N5—N4—C15—C1−179.1 (3)
C1—N1—C5—C40.1 (5)N1—C1—C15—N4−3.8 (4)
C1—N1—C5—C6−178.2 (3)C2—C1—C15—N4176.4 (3)
C3—C4—C5—N10.6 (6)N1—C1—C15—C16177.3 (3)
C3—C4—C5—C6178.7 (3)C2—C1—C15—C16−2.6 (6)
N3—N2—C6—C70.4 (4)N4—C15—C16—C170.3 (4)
N3—N2—C6—C5178.1 (3)C1—C15—C16—C17179.3 (3)
N1—C5—C6—N24.9 (4)N4—N5—C17—C160.7 (3)
C4—C5—C6—N2−173.4 (3)N4—N5—C17—C18−179.5 (3)
N1—C5—C6—C7−178.1 (3)C15—C16—C17—N5−0.6 (4)
C4—C5—C6—C73.6 (6)C15—C16—C17—C18179.5 (3)
N2—C6—C7—C80.0 (3)N5—C17—C18—C23−4.3 (5)
C5—C6—C7—C8−177.2 (3)C16—C17—C18—C23175.6 (3)
N2—N3—C8—C70.7 (4)N5—C17—C18—C19173.4 (3)
N2—N3—C8—C9179.6 (3)C16—C17—C18—C19−6.7 (5)
C6—C7—C8—N3−0.5 (4)C23—C18—C19—C20−0.8 (5)
C6—C7—C8—C9−179.2 (3)C17—C18—C19—C20−178.6 (3)
N3—C8—C9—C145.3 (5)C18—C19—C20—C210.4 (6)
C7—C8—C9—C14−176.1 (3)C19—C20—C21—C22−0.8 (6)
N3—C8—C9—C10−174.8 (3)C20—C21—C22—C231.6 (6)
C7—C8—C9—C103.9 (5)C21—C22—C23—C18−2.1 (6)
C14—C9—C10—C11−1.2 (6)C19—C18—C23—C221.6 (5)
C8—C9—C10—C11178.9 (4)C17—C18—C23—C22179.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H22···N5i0.84 (3)2.13 (3)2.878 (4)148 (4)
O1—H23···N3ii0.84 (4)2.20 (2)2.956 (4)150 (4)
N2—H17···O10.862.072.918 (4)167
N4—H5···O10.862.163.007 (4)170

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2276).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dias, H. V. R. & Gamage, C. S. P. (2007). Angew. Chem. Int. Ed.46, 2192–2194. [PubMed]
  • Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF. In preparation.
  • Zhang, J.-P., Horike, S. & Kitagawa, S. (2007). Angew. Chem. Int. Ed.46, 889–892. [PubMed]
  • Zhou, Y. B. & Chen, W. Z. (2007a). Dalton Trans. pp. 5123-5125. [PubMed]
  • Zhou, Y. B. & Chen, W. Z. (2007b). Organometallics, 26, 2742–2746.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography