PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o867–o868.
Published online 2008 April 18. doi:  10.1107/S1600536808010362
PMCID: PMC2961151

(2E)-3-(4-Chloro­phen­yl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one

Abstract

In the mol­ecule of the title compound, C13H10ClNO, the benzene and pyrrole rings are oriented at a dihedral angle of 7.37 (12)°. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric R 2 2(10) dimers. There are C—H(...)π inter­actions between benzene and pyrrole rings and a benzene C—H group. A weak π–π inter­action between the pyrrole rings [centroid–centroid distance 3.8515 (11) Å] further stabilizes the structure. There is also a π inter­action between the pyrrole ring and the carbonyl group, with a carbon–centroid distance of 3.4825 (18) Å.

Related literature

For general background, see: Varga et al. (2003 [triangle]); Katritzky & Rees (1984 [triangle]); Wu et al. (2003 [triangle]); Nam et al. (2003 [triangle]); Sondhi et al. (2005 [triangle]); Miyazaki et al. (2005 [triangle]). For related literature, see: Powers et al. (1998 [triangle]); Hu et al. (2006 [triangle]); Wang et al. (2005 [triangle]); Zeng & Cen (2006 [triangle]). For ring motif details, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o867-scheme1.jpg

Experimental

Crystal data

  • C13H10ClNO
  • M r = 231.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o867-efi1.jpg
  • a = 13.0401 (7) Å
  • b = 5.6326 (3) Å
  • c = 15.6857 (8) Å
  • β = 94.979 (3)°
  • V = 1147.76 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 296 (2) K
  • 0.30 × 0.22 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.903, T max = 0.935
  • 13745 measured reflections
  • 3081 independent reflections
  • 2180 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.128
  • S = 1.02
  • 3081 reflections
  • 185 parameters
  • All H-atom parameters refined
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010362/hk2452sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010362/hk2452Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, for funding the purchase of the diffractometer.

supplementary crystallographic information

Comment

Chalcones are 1,3-diaryl α,β-unsaturated compounds commonly used as starting materials for the synthesis of several biologically active compounds like pyrimidines and imidazoles (Varga et al., 2003). Most of the chalcones and their derivatives show biological activities such as antimicrobial (Katritzky & Rees, 1984), anti-AIDS (Wu et al., 2003), antimalarial (Nam et al., 2003), anti-inflammatory and analgesic (Sondhi et al., 2005) and antitumor (Miyazaki et al., 2005). While synthesizing different pyrimidine based compounds, we prepared the fine crystals of the title compound, (I), with known method (Powers et al., 1998). We report herein its crystal structure.

The crystal structures of 3-(4-chlorophenyl)-1-(3,4-dimethyl-2,5-dihydro-1H- pyrrol-1-yl)prop-2-enone, (II) (Hu et al., 2006), methyl-3-(1H-pyrrol-2-yl- carboxamido)propionate, (III) (Zeng & Cen, 2006) and 1,3-bis(4-chlorophenyl)- prop-2-en-1-one, (IV) (Wang et al., 2005) have been reported, previously. The title compound, (I), contains the moieties involved in these reported structures.

In the molecule of (I), (Fig. 1), the bond lengths N1-C10 [1.3711 (19) Å], N1-C13 [1.338 (3) Å] and C11-C12 [1.388 (3) Å] are reported as 1.457 (5), 1.461 (5) and 1.328 (6) Å in (II) and 1.369 (2), 1.349 (3) and 1.398 (3) Å in (III), respectively. Rings A (C1-C6) and B (N1/C10-C13) are, of course, planar and they are oriented at a dihedral angle of 7.37 (12)°. So, they are nearly coplanar. The planar central moiety (O1/C7-C9) is oriented with respect to rings A and B at dihedral angles of 8.92 (12)° and 1.94 (15)°, respectively.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(10) dimers (Fig. 2) (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The C—H···π interactions (Table 1) and π—π interactions between B rings CgB···CgBiv [symmetry code: (iv) -x, -y, 1 - z] further stabilize the structure, with a centroid-centroid distance of 3.8515 (11) Å. There is also a π interaction between the ring B at -x, -y, 1 - z and the carbonyl moiety, with C9-centroid distance of 3.4825 (18) Å.

Experimental

For the preparation of the title compound, a mixture of 4-chlorobenzaldehyde (1.4 g, 10 mmol) and 2-acetyl pyrrole (1.09 g, 10 mmol) was added to MeOH (20 ml) and stirred for 10 min at room temperature. Then, aqueous NaOH solution (10%, 4 ml) was added dropwise with continuous stirring at ambient temperature for 30 min. Light yellow precipitates appeared, to which cold water (40 ml) was added. Yellow colored powder was obtained from the filtrate, which was washed with cold MeOH, and then dried. The residue was recrystallized by dissolving in CHCl3 (10 ml) and adding n-hexane dropwise. Fine yellow crystals were obtained (yield; 1.7 g, 73%, m.p. 420-422 K).

Refinement

H atoms were located in a difference syntheses and refined [N-H = 0.83 (2) Å and Uiso(H) = 0.073 (6) Å2; C-H = 0.937 (19)-0.98 (2) Å and Uiso(H) = 0.062 (5)-0.091 (7) Å2].

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of (I), showing the formation of centro- symmetric R22(10) ring motifs. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H10ClNOF000 = 480
Mr = 231.67Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2883 reflections
a = 13.0401 (7) Åθ = 2.4–28.7º
b = 5.6326 (3) ŵ = 0.31 mm1
c = 15.6857 (8) ÅT = 296 (2) K
β = 94.979 (3)ºPrismatic, light yellow
V = 1147.76 (10) Å30.30 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker KappaAPEXII CCD diffractometer3081 independent reflections
Radiation source: fine-focus sealed tube2180 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
Detector resolution: 7.30 pixels mm-1θmax = 29.1º
T = 296(2) Kθmin = 1.6º
ω scansh = −17→17
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −7→7
Tmin = 0.903, Tmax = 0.935l = −21→21
13745 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.128  w = 1/[σ2(Fo2) + (0.0533P)2 + 0.3294P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3081 reflectionsΔρmax = 0.29 e Å3
185 parametersΔρmin = −0.30 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.47349 (5)−0.30082 (12)0.06812 (4)0.0972 (3)
O10.10949 (10)0.4232 (2)0.43283 (8)0.0672 (4)
N10.05564 (11)0.2306 (3)0.58749 (10)0.0572 (4)
C10.29765 (11)0.0517 (3)0.26744 (10)0.0464 (3)
C20.34920 (13)−0.1623 (3)0.28485 (11)0.0525 (4)
C30.40411 (13)−0.2692 (3)0.22394 (12)0.0566 (4)
C40.40726 (13)−0.1631 (3)0.14559 (11)0.0563 (4)
C50.35867 (14)0.0498 (3)0.12645 (11)0.0588 (4)
C60.30445 (13)0.1551 (3)0.18805 (11)0.0537 (4)
C70.23600 (12)0.1706 (3)0.32855 (10)0.0503 (4)
C80.20870 (13)0.0873 (3)0.40137 (11)0.0548 (4)
C90.14204 (12)0.2253 (3)0.45499 (11)0.0522 (4)
C100.11764 (11)0.1179 (3)0.53393 (10)0.0501 (4)
C110.14707 (13)−0.0945 (3)0.57282 (11)0.0566 (4)
C120.10275 (15)−0.1076 (4)0.65000 (13)0.0659 (5)
C130.04627 (14)0.0958 (4)0.65667 (12)0.0668 (5)
H20.3481 (14)−0.236 (3)0.3387 (13)0.066 (5)*
H30.4387 (13)−0.413 (3)0.2358 (11)0.062 (5)*
H60.2713 (14)0.300 (4)0.1763 (12)0.063 (5)*
H50.3607 (15)0.124 (4)0.0702 (14)0.075 (6)*
H70.2116 (14)0.324 (4)0.3102 (12)0.067 (5)*
H80.2289 (15)−0.069 (4)0.4203 (13)0.076 (6)*
H10.0220 (17)0.353 (4)0.5749 (14)0.073 (6)*
H110.1896 (14)−0.211 (3)0.5521 (12)0.063 (5)*
H120.1118 (15)−0.226 (4)0.6931 (14)0.075 (6)*
H130.0089 (17)0.150 (4)0.7011 (15)0.091 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.1189 (5)0.0979 (5)0.0810 (4)0.0298 (3)0.0442 (3)−0.0182 (3)
O10.0738 (8)0.0584 (7)0.0716 (8)0.0223 (6)0.0185 (6)−0.0044 (6)
N10.0521 (7)0.0644 (9)0.0560 (8)0.0095 (7)0.0107 (6)−0.0144 (7)
C10.0443 (7)0.0442 (7)0.0509 (8)0.0037 (6)0.0063 (6)−0.0076 (6)
C20.0576 (9)0.0474 (8)0.0535 (9)0.0092 (7)0.0107 (7)0.0012 (7)
C30.0576 (9)0.0457 (8)0.0676 (11)0.0115 (7)0.0123 (8)−0.0056 (7)
C40.0568 (9)0.0561 (9)0.0578 (9)0.0044 (7)0.0144 (7)−0.0152 (7)
C50.0653 (10)0.0612 (10)0.0512 (9)0.0050 (8)0.0120 (7)−0.0006 (8)
C60.0584 (9)0.0467 (8)0.0567 (9)0.0107 (7)0.0083 (7)0.0008 (7)
C70.0500 (8)0.0475 (8)0.0536 (9)0.0098 (6)0.0062 (6)−0.0073 (7)
C80.0558 (9)0.0531 (9)0.0565 (9)0.0132 (7)0.0113 (7)−0.0078 (7)
C90.0481 (8)0.0550 (9)0.0537 (9)0.0078 (7)0.0062 (6)−0.0136 (7)
C100.0439 (7)0.0546 (9)0.0518 (8)0.0040 (6)0.0048 (6)−0.0162 (7)
C110.0531 (9)0.0556 (9)0.0614 (10)0.0012 (7)0.0072 (7)−0.0107 (8)
C120.0647 (10)0.0701 (12)0.0638 (11)−0.0064 (9)0.0113 (8)−0.0008 (10)
C130.0576 (10)0.0844 (13)0.0604 (11)−0.0042 (9)0.0163 (8)−0.0137 (10)

Geometric parameters (Å, °)

Cl—C41.7339 (15)C5—H50.98 (2)
O1—C91.232 (2)C6—H60.94 (2)
N1—C131.338 (3)C7—C81.312 (2)
N1—C101.3711 (19)C7—H70.96 (2)
N1—H10.83 (2)C8—C91.481 (2)
C1—C61.384 (2)C8—H80.96 (2)
C1—C21.396 (2)C9—C101.438 (2)
C1—C71.465 (2)C10—C111.382 (2)
C2—C31.381 (2)C11—C121.388 (3)
C2—H20.94 (2)C11—H110.937 (19)
C3—C41.370 (3)C12—C131.371 (3)
C3—H30.938 (18)C12—H120.95 (2)
C4—C51.377 (2)C13—H130.94 (2)
C5—C61.380 (2)
C13—N1—C10109.55 (16)C8—C7—C1127.72 (15)
C13—N1—H1125.3 (15)C8—C7—H7118.5 (12)
C10—N1—H1124.5 (15)C1—C7—H7113.7 (12)
C6—C1—C2118.16 (14)C7—C8—C9121.58 (16)
C6—C1—C7118.54 (14)C7—C8—H8120.7 (12)
C2—C1—C7123.29 (15)C9—C8—H8117.7 (12)
C3—C2—C1120.73 (16)O1—C9—C10121.80 (14)
C3—C2—H2118.7 (12)O1—C9—C8121.29 (16)
C1—C2—H2120.6 (12)C10—C9—C8116.91 (14)
C4—C3—C2119.22 (16)N1—C10—C11106.62 (15)
C4—C3—H3120.2 (11)N1—C10—C9121.27 (15)
C2—C3—H3120.5 (11)C11—C10—C9132.10 (14)
C3—C4—C5121.75 (15)C10—C11—C12108.08 (16)
C3—C4—Cl119.27 (13)C10—C11—H11127.2 (12)
C5—C4—Cl118.98 (14)C12—C11—H11124.7 (12)
C4—C5—C6118.40 (16)C13—C12—C11106.80 (18)
C4—C5—H5121.3 (12)C13—C12—H12124.5 (13)
C6—C5—H5120.3 (12)C11—C12—H12128.6 (13)
C5—C6—C1121.72 (15)N1—C13—C12108.94 (17)
C5—C6—H6119.6 (12)N1—C13—H13120.7 (15)
C1—C6—H6118.7 (12)C12—C13—H13130.3 (15)
C6—C1—C2—C3−0.9 (2)C7—C8—C9—O10.3 (3)
C7—C1—C2—C3178.38 (16)C7—C8—C9—C10−179.47 (15)
C1—C2—C3—C4−0.3 (3)C13—N1—C10—C11−0.09 (19)
C2—C3—C4—C51.2 (3)C13—N1—C10—C9−179.06 (15)
C2—C3—C4—Cl−178.39 (13)O1—C9—C10—N10.9 (2)
C3—C4—C5—C6−1.0 (3)C8—C9—C10—N1−179.32 (14)
Cl—C4—C5—C6178.67 (14)O1—C9—C10—C11−177.75 (17)
C4—C5—C6—C1−0.3 (3)C8—C9—C10—C112.0 (3)
C2—C1—C6—C51.2 (3)N1—C10—C11—C12−0.27 (19)
C7—C1—C6—C5−178.12 (15)C9—C10—C11—C12178.54 (17)
C6—C1—C7—C8170.00 (17)C10—C11—C12—C130.5 (2)
C2—C1—C7—C8−9.3 (3)C10—N1—C13—C120.4 (2)
C1—C7—C8—C9−177.33 (15)C11—C12—C13—N1−0.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (2)2.12 (2)2.902 (2)156 (2)
C3—H3···CgAii0.938 (18)2.897 (17)3.6339 (19)136.4 (13)
C6—H6···CgBiii0.94 (2)2.651 (19)3.4017 (19)137.8 (16)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2452).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsion, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsion, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hu, Y.-M., Wu, F.-H., Qu, Y., Zhang, X. & Song, F.-F. (2006). Acta Cryst. E62, o2830–o2831.
  • Katritzky, A. R. & Rees, C. W. (1984). Comprehensive Heterocyclic Chemistry, pp. 25–85. Oxford: Pergamon Press.
  • Miyazaki, Y., Matsunaga, S., Tang, J., Maeda, Y., Nakano, M., Phillippe, R. J., Sibahara, M., Liu, W., Sato, H., Wang, L. & Nolte, R. T. (2005). Bioorg. Med. Chem. Lett.13, 2203–2207. [PubMed]
  • Nam, N. H., Kim, Y., You, Y. J., Hong, D. H., Kim, H. M. & Ahn, B. Z. (2003). Eur. J. Med. Chem.38, 179–187. [PubMed]
  • Powers, D. G., Casebier, D. S., Focas, D., Ryan, W. J., Troth, J. R. & Coffen, D. L. (1998). Tetrahedron, 54, 4085–4096.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sondhi, S. M., Singh, N., Johar, M. & Kumar, A. (2005). Bioorg. Med. Chem.13, 6158–6166. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Varga, L., Nagy, T., Kövesdi, I., Benet-Buchkholz, J., Dormán, G., Ürge, L. & Darvas, F. (2003). Tetrahedron, 59, 655–662.
  • Wang, L., Yang, W. & Zhang, D.-C. (2005). Acta Cryst. E61, o2820–o2822.
  • Wu, J. H., Wang, X. H., Yi, Y. H. & Lee, K. H. (2003). Bioorg. Med. Chem. Lett.13, 1813–1815. [PubMed]
  • Zeng, X. C. & Cen, Y. Z. (2006). Acta Cryst. E62, o673–o674.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography