PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m625.
Published online 2008 April 4. doi:  10.1107/S1600536808008453
PMCID: PMC2961150

{μ-6,6′-Dimeth­oxy-2,2′-[1,2-phenyl­ene­bis(nitrilo­methyl­idyne)]diphenolato}methano­lcopper(II)sodium(I)

Abstract

In the title complex, [NaCu(C22H18N2O4)Cl(CH3OH)], the Cu atom lies nearly in the plane defined by the N2O2 core of donor atoms, the out-of-plane distance being 0.001 (2) Å. The anion provides a planar cavity of four O atoms which accommodates a sodium cation. The coordination geometry around sodium is completed by the methanol O atom and a chloride ion. The four O atoms define a coordination plane containing the sodium cation [maximum displacement from the mean plane through the five atoms = 0.152 (3) Å for Na]. The crystal structure is stabilized by inter­molecular C—H(...)Cl and O—H(...)Cl hydrogen bonds, which link the mol­ecules into dimers. The crystal packing is further stabilized by weak π–π stacking inter­actions [centroid–centroid distances of 3.442 (4), 3.482 (3), 3.350 (2), 3.531 (4) 3.575 (2) and 3.604 (2) Å].

Related literature

For related literature, see: Molina et al. (1998 [triangle]); Lo et al. (2004 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m625-scheme1.jpg

Experimental

Crystal data

  • [NaCu(C22H18N2O4)Cl(CH4O)]
  • M r = 528.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m625-efi1.jpg
  • a = 11.7986 (2) Å
  • b = 7.9657 (2) Å
  • c = 23.8291 (3) Å
  • β = 93.283 (2)°
  • V = 2235.88 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.16 mm−1
  • T = 295 (2) K
  • 0.22 × 0.18 × 0.12 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.785, T max = 0.874
  • 20679 measured reflections
  • 4620 independent reflections
  • 3958 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.083
  • S = 1.02
  • 4620 reflections
  • 302 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008453/hg2383sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008453/hg2383Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

It is known that phenylene bridged Schiff base ligand N,N'-1,2-Phenylene-bis(3-methoxysalicylideneiminato) as N– or O-donors exhibit excellent coordination capability to form supramolecular frameworks. Self-assembly by H-bonding, π-π stacking, and van der Waals interactions is also an important process in the formation of noncovalent supramolecular frameworks (Lo et al., 2006; Molina et al., 1998). The title compound, (I), was prepared by employing N,N'-1,2-Phenylene-bis(3-methoxysalicylideneiminato) as ligand. Here we present its crystal structure.

In the title complex,(I), the copper atoms lie nearly in the plane defined by the N2O2 core of donor atoms, the out-of-plane distances being 0.001 (2)Å. The anion provides a planar cavity of four oxygen atoms which accommodates a sodium cation. The coordination geometry around sodium is completed by the oxygen atom from methanol molecule and chloride ion. The four oxygen atoms [O1,O2,O3,O4] define a c0ordination plane containing the sodium cation (maximum displacement from the mean plane through the five atoms: 0.152 (3) Å for Na). The crystal structure is stabilized by intermolecular C—H···Cl hydrogen bonds, which link the molecules into dimers. The packing is also stabilized by six intermolecular π-π stacking interactions, with relatively short distance Cg1···Cg4i 3.575 (2) Å, Cg1···Cg5ii 3.482 (3) Å, Cg2···Cg2i 3.604 (2) Å, Cg2···Cg4i 3.350 (2) Å, Cg3···Cg3ii 3.442 (4) Å, Cg3···Cg5ii 3.531 (4) Å, where Cg1, Cg2, Cg3, Cg4 and Cg5 are centroids of Cu1/N1/N2/C9/C14, Cu1/O2/N1/C6—C8, Cu1/O3/N2/C15/C16/C21, C2—C7 and C16—C21 rings, respectively [symmetry code: (i) 2 - x,1 - y,-z, (ii) 1 - x,1 - y,-z].

Experimental

The phenylene bridged Schiff base ligand N,N'-1,2-Phenylene-bis(3-methoxysalicylideneiminato) was prepared in excellent yield (92%) according to the literature method (Lo et al., 2004) via the condensation of 1,2-diaminobenzene with o-vanillin and 5-(4'-methylphenyl)-3-methoxysalicylaldehyde, respectively, in a 2:1 mole ratio. The 1H NMR spectrum of Schiff base ligand in CDCl3 showed a singlet at δ 8.60 for the imino protons and a broad singlet at δ 13.23 for the hydroxyl protons, respectively.

To a solution of the N,N'-1,2-Phenylene-bis(3-methoxysalicylideneiminato (0.38 g, 1 mmol) in methanol (10 ml), 0.134 g (1 mmol) CuCl2, 0.06 g (1 mmol) NaCl powder was slowly added. After stirring for four hours, the solution was filtered to remove the precipitate and placed in a desiccator filled with methanol. Brown crystals were obtained about one week later. Elemental analysis [found (calculated)] for C23H22N2O5ClCuNa: C 52.20 (52.28), H 4.23 (4.20), N 5.20% (5.30%). IR /m C=N 1642 cm-1.

Refinement

All H atoms were found on difference maps. The hydroxy proton atoms were refined freely, giving an O–H bond distance of 0.86 Å. The remaining atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 times Ueq(C) (1.5 Ueq for methyl).

Figures

Fig. 1.
View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
Fig. 2.
Packing diagram of structure of (I), view along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[NaCu(C22H18N2O4)Cl(CH4O)]F000 = 1084
Mr = 528.41Dx = 1.570 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3689 reflections
a = 11.7986 (2) Åθ = 2.2–26.6º
b = 7.9657 (2) ŵ = 1.16 mm1
c = 23.8291 (3) ÅT = 295 (2) K
β = 93.283 (2)ºBlock, brown
V = 2235.88 (7) Å30.22 × 0.18 × 0.12 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer4620 independent reflections
Radiation source: fine-focus sealed tube3958 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.018
Detector resolution: 0 pixels mm-1θmax = 26.5º
T = 295(2) Kθmin = 1.7º
[var phi] and ω scansh = −14→14
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)k = −10→10
Tmin = 0.785, Tmax = 0.874l = −27→29
20679 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083  w = 1/[σ2(Fo2) + (0.0451P)2 + 1.0557P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4620 reflectionsΔρmax = 0.39 e Å3
302 parametersΔρmin = −0.24 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.245877 (17)0.00018 (3)0.488480 (9)0.03216 (8)
Na10.28232 (7)−0.09373 (11)0.62911 (3)0.0476 (2)
N10.32603 (13)−0.03020 (18)0.42070 (6)0.0325 (3)
N20.14259 (12)0.13666 (19)0.44095 (6)0.0343 (3)
O10.45834 (12)−0.3066 (2)0.61004 (6)0.0500 (4)
O20.34391 (10)−0.14186 (16)0.53338 (5)0.0364 (3)
O30.16904 (11)0.04016 (17)0.55486 (5)0.0387 (3)
O40.10358 (13)0.0706 (2)0.65442 (6)0.0577 (4)
O50.20263 (19)−0.3239 (2)0.67333 (9)0.0760 (5)
Cl10.39839 (5)0.09785 (10)0.70798 (3)0.0707 (2)
C10.5137 (2)−0.4081 (4)0.65277 (10)0.0664 (7)
H1A0.4732−0.40080.68650.100*
H1B0.5900−0.36900.66020.100*
H1C0.5150−0.52270.64040.100*
C20.50487 (15)−0.3024 (2)0.55889 (8)0.0358 (4)
C30.60488 (16)−0.3766 (2)0.54631 (9)0.0410 (4)
H30.6460−0.43850.57360.049*
C40.64579 (16)−0.3597 (2)0.49238 (9)0.0427 (4)
H40.7142−0.40960.48420.051*
C50.58578 (15)−0.2708 (2)0.45224 (9)0.0382 (4)
H50.6142−0.25930.41680.046*
C60.48040 (14)−0.1950 (2)0.46330 (8)0.0324 (4)
C70.43811 (14)−0.2087 (2)0.51781 (7)0.0308 (4)
C80.42240 (14)−0.1073 (2)0.41826 (7)0.0334 (4)
H80.4566−0.10510.38410.040*
C90.27193 (15)0.0517 (2)0.37354 (8)0.0360 (4)
C100.30926 (19)0.0474 (3)0.31902 (9)0.0488 (5)
H100.3754−0.00990.31160.059*
C110.2474 (2)0.1286 (3)0.27618 (9)0.0604 (6)
H110.27180.12480.23980.072*
C120.1496 (2)0.2153 (3)0.28688 (10)0.0603 (6)
H120.10870.26930.25760.072*
C130.11237 (18)0.2224 (3)0.34051 (9)0.0506 (5)
H130.04680.28180.34750.061*
C140.17298 (15)0.1405 (2)0.38442 (8)0.0371 (4)
C150.05522 (15)0.2153 (2)0.45833 (8)0.0395 (4)
H150.01020.27330.43150.047*
C160.02163 (15)0.2213 (2)0.51487 (9)0.0391 (4)
C17−0.07586 (17)0.3182 (3)0.52576 (11)0.0521 (5)
H17−0.11540.37270.49620.063*
C18−0.11214 (19)0.3325 (3)0.57844 (11)0.0603 (6)
H18−0.17640.39580.58470.072*
C19−0.05333 (18)0.2524 (3)0.62352 (10)0.0545 (6)
H19−0.07780.26460.65970.065*
C200.04028 (16)0.1560 (3)0.61461 (9)0.0429 (4)
C210.08043 (14)0.1367 (2)0.55956 (8)0.0356 (4)
C220.0796 (2)0.0956 (4)0.71220 (9)0.0702 (7)
H22A0.13020.02820.73580.105*
H22B0.00260.06350.71770.105*
H22C0.08990.21180.72180.105*
C230.2056 (3)−0.4837 (4)0.64857 (15)0.0820 (9)
H23A0.1700−0.56360.67210.123*
H23B0.2831−0.51600.64440.123*
H23C0.1658−0.48070.61230.123*
H5A0.172 (4)−0.335 (6)0.7048 (10)0.161 (19)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02835 (13)0.03863 (14)0.02980 (13)0.00368 (8)0.00441 (8)0.00103 (8)
Na10.0472 (4)0.0560 (5)0.0399 (4)−0.0035 (4)0.0041 (3)0.0006 (4)
N10.0334 (8)0.0340 (8)0.0302 (8)−0.0024 (6)0.0040 (6)0.0005 (6)
N20.0304 (7)0.0360 (8)0.0364 (8)−0.0001 (6)0.0008 (6)0.0012 (6)
O10.0527 (8)0.0636 (9)0.0337 (7)0.0093 (7)0.0017 (6)0.0075 (7)
O20.0328 (6)0.0442 (7)0.0327 (6)0.0075 (5)0.0062 (5)0.0032 (5)
O30.0327 (6)0.0502 (7)0.0337 (7)0.0075 (6)0.0069 (5)−0.0006 (6)
O40.0513 (9)0.0869 (12)0.0361 (7)0.0088 (8)0.0126 (6)−0.0058 (8)
O50.0989 (15)0.0591 (11)0.0731 (13)−0.0056 (10)0.0331 (11)0.0029 (10)
Cl10.0488 (3)0.1063 (5)0.0580 (3)−0.0131 (3)0.0121 (3)−0.0248 (4)
C10.0759 (17)0.0821 (18)0.0401 (12)0.0095 (14)−0.0066 (11)0.0158 (12)
C20.0365 (9)0.0344 (9)0.0361 (9)−0.0024 (7)−0.0001 (7)−0.0008 (7)
C30.0361 (9)0.0351 (9)0.0506 (11)0.0030 (8)−0.0073 (8)0.0010 (8)
C40.0317 (9)0.0386 (10)0.0580 (12)0.0041 (8)0.0054 (8)−0.0057 (9)
C50.0340 (9)0.0352 (9)0.0463 (11)−0.0007 (7)0.0104 (8)−0.0040 (8)
C60.0309 (8)0.0287 (8)0.0381 (9)−0.0024 (7)0.0059 (7)−0.0036 (7)
C70.0292 (8)0.0284 (8)0.0349 (9)−0.0024 (7)0.0015 (7)−0.0024 (7)
C80.0343 (9)0.0343 (9)0.0323 (9)−0.0037 (7)0.0081 (7)−0.0028 (7)
C90.0361 (9)0.0382 (9)0.0336 (9)−0.0056 (8)0.0000 (7)0.0024 (8)
C100.0486 (12)0.0625 (13)0.0356 (10)0.0021 (10)0.0063 (9)0.0027 (10)
C110.0619 (14)0.0848 (17)0.0345 (11)−0.0027 (13)0.0040 (10)0.0124 (11)
C120.0591 (14)0.0755 (16)0.0450 (12)0.0012 (12)−0.0069 (10)0.0210 (12)
C130.0440 (11)0.0599 (13)0.0472 (12)0.0038 (10)−0.0029 (9)0.0123 (10)
C140.0352 (9)0.0388 (10)0.0372 (9)−0.0050 (7)−0.0001 (7)0.0038 (8)
C150.0322 (9)0.0384 (10)0.0474 (11)0.0013 (7)−0.0018 (8)0.0050 (8)
C160.0293 (9)0.0369 (9)0.0516 (11)−0.0008 (7)0.0056 (8)−0.0034 (9)
C170.0375 (10)0.0491 (12)0.0702 (15)0.0103 (9)0.0072 (10)0.0008 (11)
C180.0408 (11)0.0566 (13)0.0852 (18)0.0111 (10)0.0194 (12)−0.0115 (13)
C190.0432 (11)0.0598 (13)0.0627 (14)−0.0020 (10)0.0216 (10)−0.0168 (12)
C200.0348 (9)0.0482 (11)0.0466 (11)−0.0054 (8)0.0102 (8)−0.0108 (9)
C210.0270 (8)0.0378 (9)0.0428 (10)−0.0051 (7)0.0074 (7)−0.0071 (8)
C220.0670 (15)0.108 (2)0.0375 (12)−0.0051 (15)0.0183 (11)−0.0125 (13)
C230.083 (2)0.0695 (19)0.093 (2)−0.0177 (15)0.0020 (18)−0.0110 (15)

Geometric parameters (Å, °)

Cu1—O31.8947 (13)C5—C61.420 (2)
Cu1—O21.9029 (12)C5—H50.9300
Cu1—N11.9331 (15)C6—C71.422 (2)
Cu1—N21.9472 (15)C6—C81.423 (3)
Cu1—Na13.4363 (8)C8—H80.9300
Na1—O52.339 (2)C9—C101.396 (3)
Na1—O32.4047 (15)C9—C141.402 (3)
Na1—O22.4633 (14)C10—C111.381 (3)
Na1—O42.5828 (17)C10—H100.9300
Na1—Cl12.7279 (10)C11—C121.380 (4)
Na1—O12.7392 (17)C11—H110.9300
N1—C81.297 (2)C12—C131.376 (3)
N1—C91.419 (2)C12—H120.9300
N2—C151.295 (2)C13—C141.395 (3)
N2—C141.414 (2)C13—H130.9300
O1—C21.365 (2)C15—C161.427 (3)
O1—C11.429 (3)C15—H150.9300
O2—C71.305 (2)C16—C211.409 (3)
O3—C211.308 (2)C16—C171.421 (3)
O4—C201.356 (3)C17—C181.354 (3)
O4—C221.435 (2)C17—H170.9300
O5—C231.404 (3)C18—C191.399 (4)
O5—H5A0.86 (3)C18—H180.9300
C1—H1A0.9600C19—C201.372 (3)
C1—H1B0.9600C19—H190.9300
C1—H1C0.9600C20—C211.428 (3)
C2—C31.368 (3)C22—H22A0.9600
C2—C71.431 (3)C22—H22B0.9600
C3—C41.405 (3)C22—H22C0.9600
C3—H30.9300C23—H23A0.9600
C4—C51.356 (3)C23—H23B0.9600
C4—H40.9300C23—H23C0.9600
O3—Cu1—O286.27 (5)C5—C4—H4119.9
O3—Cu1—N1177.46 (6)C3—C4—H4119.9
O2—Cu1—N194.86 (6)C4—C5—C6121.22 (18)
O3—Cu1—N294.49 (6)C4—C5—H5119.4
O2—Cu1—N2177.46 (6)C6—C5—H5119.4
N1—Cu1—N284.47 (6)C5—C6—C7119.57 (16)
O3—Cu1—Na142.40 (4)C5—C6—C8117.21 (16)
O2—Cu1—Na144.29 (4)C7—C6—C8123.23 (15)
N1—Cu1—Na1138.39 (5)O2—C7—C6125.27 (16)
N2—Cu1—Na1136.71 (5)O2—C7—C2117.55 (16)
O5—Na1—O3117.28 (7)C6—C7—C2117.18 (15)
O5—Na1—O2116.28 (7)N1—C8—C6125.73 (16)
O3—Na1—O264.46 (4)N1—C8—H8117.1
O5—Na1—O486.42 (7)C6—C8—H8117.1
O3—Na1—O461.32 (5)C10—C9—C14119.68 (18)
O2—Na1—O4125.68 (5)C10—C9—N1125.01 (18)
O5—Na1—Cl1109.09 (6)C14—C9—N1115.30 (16)
O3—Na1—Cl1119.65 (5)C11—C10—C9119.6 (2)
O2—Na1—Cl1124.19 (4)C11—C10—H10120.2
O4—Na1—Cl186.56 (5)C9—C10—H10120.2
O5—Na1—O185.27 (7)C12—C11—C10120.6 (2)
O3—Na1—O1123.18 (5)C12—C11—H11119.7
O2—Na1—O158.89 (4)C10—C11—H11119.7
O4—Na1—O1171.68 (6)C13—C12—C11120.4 (2)
Cl1—Na1—O196.03 (4)C13—C12—H12119.8
O5—Na1—Cu1125.38 (6)C11—C12—H12119.8
O3—Na1—Cu132.09 (3)C12—C13—C14120.0 (2)
O2—Na1—Cu132.65 (3)C12—C13—H13120.0
O4—Na1—Cu193.39 (4)C14—C13—H13120.0
Cl1—Na1—Cu1125.44 (3)C13—C14—C9119.59 (18)
O1—Na1—Cu191.53 (4)C13—C14—N2125.29 (18)
C8—N1—C9122.57 (16)C9—C14—N2115.12 (16)
C8—N1—Cu1124.68 (13)N2—C15—C16125.98 (18)
C9—N1—Cu1112.62 (12)N2—C15—H15117.0
C15—N2—C14122.97 (16)C16—C15—H15117.0
C15—N2—Cu1124.58 (13)C21—C16—C17119.37 (19)
C14—N2—Cu1112.45 (11)C21—C16—C15123.13 (16)
C2—O1—C1117.35 (17)C17—C16—C15117.50 (19)
C2—O1—Na1118.69 (11)C18—C17—C16121.1 (2)
C1—O1—Na1123.52 (14)C18—C17—H17119.4
C7—O2—Cu1125.64 (11)C16—C17—H17119.4
C7—O2—Na1128.90 (11)C17—C18—C19120.3 (2)
Cu1—O2—Na1103.06 (5)C17—C18—H18119.9
C21—O3—Cu1126.40 (12)C19—C18—H18119.9
C21—O3—Na1127.68 (12)C20—C19—C18120.3 (2)
Cu1—O3—Na1105.50 (6)C20—C19—H19119.8
C20—O4—C22118.06 (18)C18—C19—H19119.8
C20—O4—Na1121.02 (11)O4—C20—C19126.06 (19)
C22—O4—Na1120.19 (15)O4—C20—C21112.95 (16)
C23—O5—Na1120.05 (18)C19—C20—C21121.0 (2)
C23—O5—H5A107 (3)O3—C21—C16125.32 (17)
Na1—O5—H5A133 (3)O3—C21—C20116.79 (17)
O1—C1—H1A109.5C16—C21—C20117.89 (17)
O1—C1—H1B109.5O4—C22—H22A109.5
H1A—C1—H1B109.5O4—C22—H22B109.5
O1—C1—H1C109.5H22A—C22—H22B109.5
H1A—C1—H1C109.5O4—C22—H22C109.5
H1B—C1—H1C109.5H22A—C22—H22C109.5
O1—C2—C3125.50 (17)H22B—C22—H22C109.5
O1—C2—C7112.95 (15)O5—C23—H23A109.5
C3—C2—C7121.55 (17)O5—C23—H23B109.5
C2—C3—C4120.32 (18)H23A—C23—H23B109.5
C2—C3—H3119.8O5—C23—H23C109.5
C4—C3—H3119.8H23A—C23—H23C109.5
C5—C4—C3120.15 (17)H23B—C23—H23C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···Cl1i0.86 (2)2.34 (2)3.193 (2)172 (4)
C10—H10···Cl1ii0.932.823.729 (2)165

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2383).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lo, W. K., Wong, W. K., Guo, J. P., Wong, W. Y., Li, K. F. & Cheah, K. W. (2004). Inorg. Chim. Acta, 357, 4510–4521.
  • Lo, W. K., Wong, W. K., Wong, W. Y., Guo, J. P., Yeung, K. T., Cheng, Y. K., Yang, X. P. & Jones, R. A. (2006). Inorg. Chem.45, 9315–9325. [PubMed]
  • Molina, R. H., Mederos, A., Dominguez, S., Gili, P., Perez, C. R., Castineiras, A., Solans, X., Lloret, F. & Real, J. A. (1998). Inorg. Chem.37, 5102–5108.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography