PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m639.
Published online 2008 April 10. doi:  10.1107/S1600536808008945
PMCID: PMC2961148

(2,2′-Bipyridine-κ2 N,N′)iodido(pyrrol­idine-1-dithio­carboxyl­ato-κ2 S,S′)copper(II)

Abstract

In the title compound, [Cu(C5H8NS2)I(C10H8N2)], the CuII ion is coordinated by one iodide ion, two N atoms of the bipyridine ligand and two S atoms from the pyrrolidine-1-dithio­carboxyl­ate ligand in a distorted square-pyramidal environment.

Related literature

For related literature, see: Englhardt et al. (1998 [triangle]); Fernández et al. (2000 [triangle]); Koh et al. (2003 [triangle]); Noro et al. (2000 [triangle]); Yaghi et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m639-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5H8NS2)I(C10H8N2)]
  • M r = 492.87
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m639-efi1.jpg
  • a = 6.606 (3) Å
  • b = 16.212 (8) Å
  • c = 16.405 (8) Å
  • β = 98.399 (10)°
  • V = 1738.3 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.27 mm−1
  • T = 293 (2) K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000 [triangle]) T min = 0.722, T max = 1.000 (expected range = 0.521–0.721)
  • 13239 measured reflections
  • 3983 independent reflections
  • 3326 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.085
  • S = 1.07
  • 3983 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: CrystalClear (Rigaku, 2000 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008945/at2555sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008945/at2555Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (Nos. 50572030, 50372022), the Research Fund of Huaqiao University (No. 06BS216) and the Young Talent Fund of Fujian Province (2007 F3060).

supplementary crystallographic information

Comment

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). Dialkyldithiocarbamates anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of a considerable structural variety of complexes (Englhardt et al., 1998; Fernández et al., 2000; Koh, et al., 2003). We report here the crystal structure of the title copper(II) complex, (I), contanining a pyrrolidine-1-dithiocarboxylate ligand.

The crystal structure of (I) is built of discrete molecules of the CuII complex (Fig. 1). The CuII ion is five-coordinated in a distorted square-pyramidal environment by one I atom in the apical position, two N atoms from the bipyridine ligand and two S atoms from the pyrrolidine-1-dithiocarboxylate ligand in the basal plane (Table 1).

Experimental

A mixture of Cu(Ac)2.H2O (0.08 g, 0.4 mmol), NaS2CNC4H8.2H2O (0.09 g, 0.4 mmol), 2,2'-bipyridine (0.06 g 0.4 mmol) and NaI.2H2O (0.07 g, 0.4 mmol) was stirred in DMF (15 ml). 2-PrOH was diffused into the resulting solution, yielding single crystals of (I).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (pyrrolidinyl), Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

[Cu(C5H8NS2)I(C10H8N2)]F000 = 964
Mr = 492.87Dx = 1.883 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1823 reflections
a = 6.606 (3) Åθ = 2.5–27.5º
b = 16.212 (8) ŵ = 3.27 mm1
c = 16.405 (8) ÅT = 293 (2) K
β = 98.399 (10)ºPrism, black
V = 1738.3 (15) Å30.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer3983 independent reflections
Radiation source: Sealed Tube3326 reflections with I > 2σ(I)
Monochromator: Graphite MonochromatorRint = 0.029
T = 293(2) Kθmax = 27.5º
ω scansθmin = 2.5º
Absorption correction: multi-scan(CrystalClear; Rigaku, 2000)h = −8→8
Tmin = 0.722, Tmax = 1.000k = −20→21
13239 measured reflectionsl = −21→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.085  w = 1/[σ2(Fo2) + (0.041P)2 + 0.011P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3983 reflectionsΔρmax = 0.54 e Å3
199 parametersΔρmin = −0.63 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.47246 (6)0.43996 (2)0.34106 (3)0.03678 (12)
I10.22688 (4)0.387568 (15)0.190445 (15)0.04821 (10)
S10.37645 (15)0.34944 (6)0.43793 (6)0.0475 (2)
S20.74152 (13)0.34585 (6)0.36071 (6)0.0419 (2)
N10.6415 (4)0.22460 (17)0.45729 (17)0.0400 (7)
N20.3012 (4)0.53917 (17)0.36333 (17)0.0383 (6)
N30.6083 (4)0.52693 (16)0.28057 (17)0.0368 (6)
C10.5952 (5)0.2977 (2)0.4244 (2)0.0364 (7)
C20.5177 (6)0.1803 (2)0.5103 (2)0.0485 (9)
H2A0.39080.16090.47890.058*
H2B0.48650.21520.55480.058*
C30.6532 (9)0.1087 (3)0.5431 (4)0.0826 (16)
H3A0.73370.12270.59550.099*
H3B0.57160.06030.55040.099*
C40.7884 (8)0.0936 (3)0.4791 (3)0.0711 (13)
H4A0.72350.05590.43730.085*
H4B0.91800.07010.50390.085*
C50.8212 (6)0.1769 (2)0.4417 (3)0.0512 (10)
H5A0.94690.20210.46820.061*
H5B0.82620.17210.38310.061*
C60.1427 (6)0.5395 (2)0.4055 (2)0.0497 (9)
H6A0.10790.49060.42970.060*
C70.0283 (7)0.6094 (3)0.4148 (2)0.0549 (11)
H7A−0.07930.60800.44550.066*
C80.0778 (6)0.6805 (3)0.3777 (2)0.0549 (11)
H8A0.00250.72830.38220.066*
C90.2389 (6)0.6810 (2)0.3336 (2)0.0501 (9)
H9A0.27300.72910.30790.060*
C100.3503 (5)0.60970 (19)0.3277 (2)0.0369 (7)
C110.5251 (5)0.60319 (19)0.2813 (2)0.0351 (7)
C120.6013 (6)0.6680 (2)0.2401 (2)0.0458 (9)
H12A0.54320.72020.24110.055*
C130.7627 (6)0.6551 (3)0.1978 (2)0.0522 (10)
H13A0.81670.69860.17080.063*
C140.8441 (6)0.5771 (2)0.1955 (2)0.0497 (9)
H14A0.95150.56670.16610.060*
C150.7631 (5)0.5149 (2)0.2378 (2)0.0428 (8)
H15A0.81830.46220.23650.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0405 (2)0.0267 (2)0.0451 (2)0.00447 (16)0.01283 (19)0.00300 (16)
I10.04930 (17)0.04100 (16)0.05259 (17)−0.00012 (10)0.00166 (12)−0.00718 (10)
S10.0485 (5)0.0420 (5)0.0574 (6)0.0155 (4)0.0255 (5)0.0126 (4)
S20.0394 (5)0.0381 (5)0.0508 (5)0.0054 (4)0.0154 (4)0.0079 (4)
N10.0428 (16)0.0355 (16)0.0437 (16)0.0073 (12)0.0125 (13)0.0047 (12)
N20.0435 (16)0.0343 (15)0.0379 (15)0.0081 (12)0.0084 (13)0.0008 (11)
N30.0400 (15)0.0280 (14)0.0430 (15)0.0001 (11)0.0076 (13)−0.0002 (11)
C10.0398 (17)0.0344 (18)0.0357 (17)0.0029 (14)0.0081 (15)−0.0011 (13)
C20.053 (2)0.045 (2)0.049 (2)0.0033 (17)0.0125 (18)0.0156 (16)
C30.094 (4)0.052 (3)0.107 (4)0.018 (3)0.030 (3)0.031 (3)
C40.095 (4)0.038 (2)0.083 (3)0.020 (2)0.021 (3)0.009 (2)
C50.049 (2)0.046 (2)0.061 (2)0.0199 (17)0.0170 (19)0.0053 (18)
C60.054 (2)0.050 (2)0.048 (2)0.0113 (18)0.0144 (18)0.0037 (17)
C70.055 (2)0.065 (3)0.047 (2)0.022 (2)0.0126 (19)−0.0027 (18)
C80.061 (2)0.048 (2)0.054 (2)0.023 (2)0.001 (2)−0.0090 (18)
C90.063 (2)0.034 (2)0.049 (2)0.0139 (17)−0.0024 (19)−0.0033 (16)
C100.0429 (18)0.0295 (17)0.0362 (17)0.0049 (13)−0.0008 (15)−0.0031 (13)
C110.0372 (17)0.0292 (17)0.0363 (17)−0.0012 (13)−0.0031 (14)0.0011 (13)
C120.051 (2)0.0270 (18)0.057 (2)0.0008 (15)0.0004 (19)0.0038 (15)
C130.054 (2)0.044 (2)0.059 (2)−0.0094 (18)0.010 (2)0.0128 (17)
C140.052 (2)0.048 (2)0.052 (2)−0.0051 (18)0.0155 (18)0.0043 (17)
C150.0446 (19)0.037 (2)0.049 (2)−0.0012 (15)0.0147 (17)−0.0015 (15)

Geometric parameters (Å, °)

Cu1—N32.010 (3)C4—H4A0.9700
Cu1—N22.030 (3)C4—H4B0.9700
Cu1—S12.3185 (12)C5—H5A0.9700
Cu1—S22.3289 (13)C5—H5B0.9700
Cu1—I12.8789 (11)C6—C71.382 (5)
S1—C11.713 (3)C6—H6A0.9300
S2—C11.712 (3)C7—C81.365 (6)
N1—C11.319 (4)C7—H7A0.9300
N1—C21.466 (4)C8—C91.371 (6)
N1—C51.471 (4)C8—H8A0.9300
N2—C61.337 (5)C9—C101.381 (5)
N2—C101.345 (4)C9—H9A0.9300
N3—C151.336 (4)C10—C111.476 (5)
N3—C111.354 (4)C11—C121.384 (5)
C2—C31.516 (5)C12—C131.371 (5)
C2—H2A0.9700C12—H12A0.9300
C2—H2B0.9700C13—C141.377 (6)
C3—C41.495 (7)C13—H13A0.9300
C3—H3A0.9700C14—C151.375 (5)
C3—H3B0.9700C14—H14A0.9300
C4—C51.511 (5)C15—H15A0.9300
N3—Cu1—N280.44 (12)C3—C4—H4B110.5
N3—Cu1—S1165.74 (8)C5—C4—H4B110.5
N2—Cu1—S199.36 (9)H4A—C4—H4B108.7
N3—Cu1—S298.11 (9)N1—C5—C4103.4 (3)
N2—Cu1—S2158.17 (8)N1—C5—H5A111.1
S1—Cu1—S276.71 (4)C4—C5—H5A111.1
N3—Cu1—I191.12 (8)N1—C5—H5B111.1
N2—Cu1—I197.42 (8)C4—C5—H5B111.1
S1—Cu1—I1103.02 (4)H5A—C5—H5B109.0
S2—Cu1—I1104.39 (4)N2—C6—C7122.9 (4)
C1—S1—Cu184.31 (12)N2—C6—H6A118.6
C1—S2—Cu184.01 (12)C7—C6—H6A118.6
C1—N1—C2124.5 (3)C8—C7—C6118.2 (4)
C1—N1—C5123.1 (3)C8—C7—H7A120.9
C2—N1—C5112.3 (3)C6—C7—H7A120.9
C6—N2—C10118.6 (3)C7—C8—C9119.7 (4)
C6—N2—Cu1126.6 (3)C7—C8—H8A120.2
C10—N2—Cu1114.8 (2)C9—C8—H8A120.2
C15—N3—C11118.7 (3)C8—C9—C10119.7 (4)
C15—N3—Cu1126.0 (2)C8—C9—H9A120.2
C11—N3—Cu1115.1 (2)C10—C9—H9A120.2
N1—C1—S2122.8 (3)N2—C10—C9121.0 (4)
N1—C1—S1122.4 (3)N2—C10—C11114.8 (3)
S2—C1—S1114.70 (19)C9—C10—C11124.1 (3)
N1—C2—C3103.5 (3)N3—C11—C12120.8 (3)
N1—C2—H2A111.1N3—C11—C10114.8 (3)
C3—C2—H2A111.1C12—C11—C10124.4 (3)
N1—C2—H2B111.1C13—C12—C11119.8 (3)
C3—C2—H2B111.1C13—C12—H12A120.1
H2A—C2—H2B109.0C11—C12—H12A120.1
C4—C3—C2105.0 (4)C12—C13—C14119.3 (4)
C4—C3—H3A110.8C12—C13—H13A120.3
C2—C3—H3A110.8C14—C13—H13A120.3
C4—C3—H3B110.8C15—C14—C13118.5 (4)
C2—C3—H3B110.8C15—C14—H14A120.7
H3A—C3—H3B108.8C13—C14—H14A120.7
C3—C4—C5105.9 (4)N3—C15—C14122.8 (4)
C3—C4—H4A110.5N3—C15—H15A118.6
C5—C4—H4A110.5C14—C15—H15A118.6

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2555).

References

  • Englhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. W. (1998). Inorg. Chem.27, 2371—2373.
  • Fernández, E. J., López-de-Luzuriaga, J. M., Monge, M., Olmos, E., Laguna, A., Villacampa, M. D. & Jones, P. G. (2000). J. Cluster Sci.11, 153–166.
  • Koh, Y. W., Lai, C. S., Du, A. Y., Tiekink, E. R. T. & Loh, K. P. (2003). Chem. Mater.15, 4544-4554.
  • Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed.39, 2081–2084. [PubMed]
  • Rigaku (2000). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474-484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography