PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o866.
Published online 2008 April 18. doi:  10.1107/S1600536808010155
PMCID: PMC2961147

2,2′-Diazinodimethylidyne)di-o-phenyl­ene) dibenzoate

Abstract

The title compound, C28H20N2O4, was synthesized by the reaction of 2-(hydrazonometh­yl)phenyl benzoate with iodine. The mol­ecule possesses a crystallographically imposed center of symmetry at the mid-point of the hydrazine N—N bond. The substituents at the ends of the C=N bonds adopt an E,E configuration. Inter­molecular C—H(...)π(arene) hydrogen bonds and aromatic π–π stacking inter­actions [centroid–centroid distance 3.900 (1) Å] link the mol­ecules into (100) sheets. In addition, there is an inter­molecular C—H(...)O hydrogen-bond inter­action.

Related literature

For related literature, see: Glaser et al. (1995 [triangle]); Kesslen et al. (1999 [triangle]); Hunig et al. (2000 [triangle]); Glidewell et al. (2006 [triangle]); Xu & Hu (2007 [triangle]); Zheng et al. (2006 [triangle]); Liu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o866-scheme1.jpg

Experimental

Crystal data

  • C28H20N2O4
  • M r = 448.46
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o866-efi1.jpg
  • a = 5.5442 (9) Å
  • b = 7.9966 (13) Å
  • c = 13.455 (2) Å
  • α = 73.201 (2)°
  • β = 82.066 (3)°
  • γ = 74.441 (2)°
  • V = 548.94 (15) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 (2) K
  • 0.35 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 2797 measured reflections
  • 1885 independent reflections
  • 1692 reflections with I > 2σ(I)
  • R int = 0.117

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.135
  • S = 1.03
  • 1885 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010155/fj2111sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010155/fj2111Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Prof. A. K. Mukherjee of the Department of Physics, Jadavpur University, for his interest and for stimulating discussions.

supplementary crystallographic information

Comment

The synthetic utility of hydrazine compounds in coordination chemistry as well as their remarkable photochromic properties has resulted in continued interest in studies of their stereochemistry (Glaser et al., 1995). The photochromism in hydrazines arises from intramolecular H-atom transfer, together with a change in the π-electron system. To study the effect of intermolecular interactions, such as π···π charge transfer or hydrogen bonding, on H-atom transfer processes, solid state structure analyses of a number of hydrazine compounds containing both a diamine linkage and N—N bonding have been reported in the literature (Liu et al., 2007; Xu & Hu, 2007; Zheng et al., 2006) We report here the synthesis and molecular structure of the title benzylidenehydrazine derivative(I).

As observed in many symmetric azines with an E, E configuration (Glidewell et al., 2006), the molecule of (I) possesses a crystallographically imposed center of symmetry at the mid-point of the N—N bond (Fig. 1). Consequently the asymmetric unit consists of half of the molecule. The central –CH=N—N=CH– fragment is strictly planar, but as a whole the molecule is not planar; the benzoyloxy group (C8—C14, O1, O2) is rotated about the O1—C7 bond by 78.7 (2)° with respect to the plane of the benzylidene hydrazine moiety (C1—C7, N1). The single-bond character of N1—N1i[1.408 (2) Å] and the double-bond character of C1=N1[1.274 (2) Å] indicate a lack of delocalization of π-electrons, while the planar structure of >C=N—N=C< chain indicates π configuration. The C=N—N angle [11.4 (2)°] in (I) is significantly smaller than the ideal sp2value of 120°, as consequence of repulsion between the nitrogen lone pairs and the adjacent C=N bond.

The supramolecular aggregation in (I) is determined by C—H···π (arene) hydrogen bond and aromatic π···π stacking interactions. The aryl C5 atom in the ring at (x, y, z) is part of the molecule centered across (0, 0, 0) and acts as a hydrogen bond donor to the aryl ring (C9—C14) at (-1 + x, 1 + y, z), which forms part of the molecule centered across (-1, 1, 0). Propagation of this hydrogen-bond forms a chain running parallel to the [11 0] direction (Fig. 2). The phenyl rings (C9—C14) at (x, y, z) and (1 - x, 1 - y,1 - z) are components of the molecules across the inversion centers at (0, 0, 0) and (1 - x, 1 - y, 1 - z), respectively. These strictly parallel rings with an interplanar spacing of 3.464 (1) Å, the ring-centroid separation of 3.900 (1)Å and the centroid offset of 1.79Å lead to the formation of a π-stacked chain of centrosymmetric molecules running parallel to the [1 1 1] direction (Fig. 2).The combination of the [110] and [1 1 1] chains generates a (100) sheet.

Experimental

A solution of iodine(8 g, 7 mmol) in 15 ml tetrahydrofuran (THF) was added dropwise to a magnetically stirred solution of 2- benzoyloxy phenyl hydrazone (0.68 g, 2.8 mmol) in THF (40 ml) and triethylamine (10 ml) at room temperature (298k). The mixture was stirred for 1 h and then diluted with water (100 ml) and extracted with ether (3x30 ml). The extract was washed with water, aqueous sodium thiosulfate solution and brine followed by drying over anhydrous sodium sulfate. The solvent was removed in vacuo. The residual black oil was dissolved in carbon tetrachloride and filtered through silica gel to give a light yellow oil which on standing yielded shinny yellow crystals of the title compound (I).

Refinement

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) values fixed at 1.2Ueq(C).

Figures

Fig. 1.
View of the molecule of (I), with displacement ellipsoids drawn at the 30% probability level.[Symmetry code (i):- -x, -y, -z]
Fig. 2.
The packing of (I), viewed along the a axis, showing intermolecular C—H···π (arene) hydrogen bond and aromatic π···π stacking interaction.

Crystal data

C28H20N2O4Z = 1
Mr = 448.46F000 = 234
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.5442 (9) ÅCell parameters from 1976 reflections
b = 7.9966 (13) Åθ = 2.4–27.5º
c = 13.455 (2) ŵ = 0.09 mm1
α = 73.201 (2)ºT = 100 (2) K
β = 82.066 (3)ºBlock, pale yellow
γ = 74.441 (2)º0.35 × 0.20 × 0.20 mm
V = 548.94 (15) Å3

Data collection

Bruker SMART CCD area-detector diffractometer1692 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.117
Monochromator: graphiteθmax = 25.0º
T = 100(2) Kθmin = 1.6º
[var phi] and ω scansh = −6→3
Absorption correction: nonek = −9→9
2797 measured reflectionsl = −15→15
1885 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.135  w = 1/[σ2(Fo2) + (0.0874P)2 + 0.0721P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1885 reflectionsΔρmax = 0.24 e Å3
154 parametersΔρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.60203 (19)−0.17401 (13)0.23034 (8)0.0250 (3)
O2−0.3270 (2)−0.15072 (14)0.33163 (8)0.0299 (3)
N1−0.1081 (2)0.06358 (16)0.01102 (9)0.0256 (3)
C1−0.2578 (3)−0.01150 (19)0.07886 (11)0.0246 (4)
H1−0.2140−0.13830.10730.029*
C2−0.4964 (3)0.09474 (19)0.11375 (11)0.0239 (4)
C3−0.5716 (3)0.2813 (2)0.07164 (12)0.0273 (4)
H3−0.46430.34100.02060.033*
C4−0.7999 (3)0.3799 (2)0.10330 (12)0.0291 (4)
H4−0.84710.50660.07470.035*
C5−0.9593 (3)0.2945 (2)0.17645 (12)0.0287 (4)
H5−1.11700.36240.19720.034*
C6−0.8898 (3)0.1100 (2)0.21961 (11)0.0263 (4)
H6−0.99860.05080.27000.032*
C7−0.6600 (3)0.01385 (19)0.18816 (11)0.0240 (4)
C8−0.4341 (3)−0.24172 (19)0.30508 (11)0.0228 (4)
C9−0.3993 (3)−0.43981 (19)0.34806 (11)0.0231 (4)
C10−0.2123 (3)−0.5285 (2)0.41615 (12)0.0264 (4)
H10−0.1100−0.46330.43260.032*
C11−0.1736 (3)−0.7120 (2)0.46053 (12)0.0283 (4)
H11−0.0454−0.77290.50760.034*
C12−0.3236 (3)−0.8067 (2)0.43577 (12)0.0293 (4)
H12−0.2985−0.93260.46640.035*
C13−0.5087 (3)−0.7186 (2)0.36691 (12)0.0287 (4)
H13−0.6087−0.78450.34960.034*
C14−0.5495 (3)−0.5342 (2)0.32285 (12)0.0264 (4)
H14−0.6781−0.47330.27610.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0317 (6)0.0174 (6)0.0274 (6)−0.0070 (4)−0.0069 (4)−0.0048 (4)
O20.0394 (6)0.0212 (6)0.0337 (6)−0.0127 (5)−0.0095 (5)−0.0061 (4)
N10.0305 (7)0.0198 (6)0.0267 (7)−0.0039 (5)−0.0036 (5)−0.0077 (5)
C10.0334 (8)0.0167 (7)0.0249 (7)−0.0057 (6)−0.0065 (6)−0.0058 (6)
C20.0307 (8)0.0199 (8)0.0233 (7)−0.0067 (6)−0.0049 (6)−0.0073 (6)
C30.0328 (8)0.0211 (8)0.0280 (8)−0.0075 (6)−0.0037 (6)−0.0049 (6)
C40.0362 (9)0.0177 (7)0.0329 (8)−0.0037 (6)−0.0076 (6)−0.0061 (6)
C50.0290 (8)0.0261 (8)0.0326 (8)−0.0023 (6)−0.0052 (6)−0.0129 (6)
C60.0294 (8)0.0265 (8)0.0264 (8)−0.0095 (6)−0.0026 (6)−0.0093 (6)
C70.0317 (8)0.0176 (7)0.0257 (8)−0.0062 (6)−0.0089 (6)−0.0068 (6)
C80.0270 (7)0.0201 (8)0.0224 (7)−0.0067 (6)−0.0005 (6)−0.0070 (6)
C90.0274 (8)0.0201 (8)0.0240 (7)−0.0077 (6)0.0005 (6)−0.0083 (6)
C100.0311 (8)0.0226 (8)0.0285 (8)−0.0090 (6)−0.0039 (6)−0.0083 (6)
C110.0316 (8)0.0223 (8)0.0293 (8)−0.0043 (6)−0.0047 (6)−0.0050 (6)
C120.0360 (9)0.0169 (7)0.0337 (8)−0.0064 (6)0.0019 (6)−0.0065 (6)
C130.0318 (8)0.0222 (8)0.0366 (9)−0.0108 (6)−0.0003 (6)−0.0114 (6)
C140.0283 (8)0.0214 (8)0.0310 (8)−0.0069 (6)−0.0028 (6)−0.0081 (6)

Geometric parameters (Å, °)

O1—C81.3580 (18)C6—C71.381 (2)
O1—C71.4073 (17)C6—H60.9500
O2—C81.2045 (17)C8—C91.489 (2)
N1—C11.274 (2)C9—C101.382 (2)
N1—N1i1.408 (2)C9—C141.393 (2)
C1—C21.466 (2)C10—C111.384 (2)
C1—H10.9500C10—H100.9500
C2—C71.390 (2)C11—C121.392 (2)
C2—C31.401 (2)C11—H110.9500
C3—C41.384 (2)C12—C131.380 (2)
C3—H30.9500C12—H120.9500
C4—C51.383 (2)C13—C141.389 (2)
C4—H40.9500C13—H130.9500
C5—C61.387 (2)C14—H140.9500
C5—H50.9500
C8—O1—C7116.52 (10)C2—C7—O1120.43 (13)
C1—N1—N1i111.37 (15)O2—C8—O1123.28 (13)
N1—C1—C2121.02 (13)O2—C8—C9125.08 (13)
N1—C1—H1119.5O1—C8—C9111.63 (12)
C2—C1—H1119.5C10—C9—C14120.38 (14)
C7—C2—C3117.32 (14)C10—C9—C8117.36 (13)
C7—C2—C1121.33 (13)C14—C9—C8122.25 (13)
C3—C2—C1121.33 (13)C9—C10—C11120.26 (13)
C4—C3—C2120.94 (14)C9—C10—H10119.9
C4—C3—H3119.5C11—C10—H10119.9
C2—C3—H3119.5C10—C11—C12119.53 (14)
C5—C4—C3120.14 (14)C10—C11—H11120.2
C5—C4—H4119.9C12—C11—H11120.2
C3—C4—H4119.9C13—C12—C11120.28 (14)
C4—C5—C6120.20 (14)C13—C12—H12119.9
C4—C5—H5119.9C11—C12—H12119.9
C6—C5—H5119.9C12—C13—C14120.35 (13)
C7—C6—C5118.95 (14)C12—C13—H13119.8
C7—C6—H6120.5C14—C13—H13119.8
C5—C6—H6120.5C13—C14—C9119.19 (14)
C6—C7—C2122.43 (14)C13—C14—H14120.4
C6—C7—O1117.04 (13)C9—C14—H14120.4
N1i—N1—C1—C2−179.77 (13)C8—O1—C7—C278.69 (16)
N1—C1—C2—C7−179.63 (13)C7—O1—C8—O2−3.9 (2)
N1—C1—C2—C31.9 (2)C7—O1—C8—C9176.64 (11)
C7—C2—C3—C40.0 (2)O2—C8—C9—C10−6.7 (2)
C1—C2—C3—C4178.48 (13)O1—C8—C9—C10172.76 (12)
C2—C3—C4—C5−0.9 (2)O2—C8—C9—C14172.44 (14)
C3—C4—C5—C61.0 (2)O1—C8—C9—C14−8.13 (19)
C4—C5—C6—C7−0.1 (2)C14—C9—C10—C11−0.4 (2)
C5—C6—C7—C2−0.8 (2)C8—C9—C10—C11178.68 (12)
C5—C6—C7—O1−177.14 (12)C9—C10—C11—C120.3 (2)
C3—C2—C7—C60.9 (2)C10—C11—C12—C130.4 (2)
C1—C2—C7—C6−177.63 (13)C11—C12—C13—C14−1.0 (2)
C3—C2—C7—O1177.10 (12)C12—C13—C14—C90.8 (2)
C1—C2—C7—O1−1.4 (2)C10—C9—C14—C13−0.1 (2)
C8—O1—C7—C6−104.90 (14)C8—C9—C14—C13−179.14 (12)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O2ii0.952.643.519 (2)154
C5—H5···Cg1iii0.952.793.510 (2)133

Symmetry codes: (ii) x−1, y, z; (iii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2111).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Glaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449–1458.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. B62, 666–675. [PubMed]
  • Hunig, S., Kemmer, M. & Wenner, H. (2000). Chem. Eur. J.6, 2618–2632. [PubMed]
  • Kesslen, E. C., Euler, W. B. & Foxman, B. M. (1999). Chem. Mater.11, 336–340.
  • Liu, G., Xie, L., Wang, Y. & Wang, J.-D. (2007). Acta Cryst. E63, o2611.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Xu, F. & Hu, W.-X. (2007). Acta Cryst. E63, o289–o290.
  • Zheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913–o1914.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography