PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o861.
Published online 2008 April 16. doi:  10.1107/S1600536808010143
PMCID: PMC2961145

N-(3-Chloro­phen­yl)-2-methyl­benzamide

Abstract

The conformation of the N—H bond in the structure of the title compound, C14H12ClNO, is anti to the meta-chloro substituent in the aniline ring, while the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring. The conformations of the N—H and C=O bonds are anti to each other, similar to those observed in 2-methyl-N-(3-methyl­phen­yl)benzamide (N3MP2MBA). The –NHC(=O)– group makes a dihedral angle of 55.8 (7)° with the benzoyl ring, while the angle between the benzoyl and aniline rings is 37.5 (1)°; the respective values for N3MP2MBA are 55.2 (7) and 36.2 (1)°. N—H(...)O hydrogen bonds link the mol­ecules into infinite chains running along the c axis.

Related literature

For related literature, see: Gowda et al. (2003 [triangle], 2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o861-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO
  • M r = 245.70
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0o861-efi1.jpg
  • a = 8.8237 (8) Å
  • c = 15.977 (2) Å
  • V = 1243.9 (2) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.57 mm−1
  • T = 299 (2) K
  • 0.60 × 0.10 × 0.07 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.308, T max = 0.841
  • 4144 measured reflections
  • 2173 independent reflections
  • 1844 reflections with I > 2σ(I)
  • R int = 0.036
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.120
  • S = 1.07
  • 2173 reflections
  • 159 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1020 Friedel pairs
  • Flack parameter: 0.00 (2)

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010143/om2228sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010143/om2228Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-methyl-N-(3-chlorophenyl)- benzamide (N3CP2MBA) has been determined as part of substituent effect studies on the solid state structures of benzanilides (Gowda et al., 2003; Gowda et al. (2008a, 2008b). The conformation of the N—H bond in N3CP2MBA (Fig. 1) is anti to the meta-chloro substituent in the aniline ring, while the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring and the conformations of the N—H and C=O bonds are anti to each other, identical to that observed in 2-methyl-N-(3-methylphenyl)-benzamide (N3MP2MBA). The bond parameters in N3CP2MBA are similar to those in 2-methyl-N-(phenyl)-benzamide (Gowda et al., 2008a), N3MP2MBA (Gowda et al., 2008b) and other benzanilides (Gowda et al., 2003). The amide group, –NHCO– makes a dihedral angle of 55.8 (7)° with the benzoyl ring, while that between benzoyl and aniline rings is 37.5 (1)°, compared to the respective values of 55.2 (7)° and 36.2 (1)° for N3MP2MBA. The packing diagram of N3CP2MBA showing the hydrogen bonds N1—H1N···O1 (Table 1) is given in Fig. 2.

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H on N1 was located in difference map and its position freely refined. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound as viewed down a and with hydrogen bonding shown as dashed lines.

Crystal data

C14H12ClNOZ = 4
Mr = 245.70F000 = 512
Tetragonal, P43Dx = 1.312 Mg m3
Hall symbol: P 4cwCu Kα radiation λ = 1.54180 Å
a = 8.8237 (8) ÅCell parameters from 25 reflections
b = 8.8237 (8) Åθ = 5.7–21.9º
c = 15.977 (2) ŵ = 2.57 mm1
α = 90ºT = 299 (2) K
β = 90ºRod, colourless
γ = 90º0.60 × 0.10 × 0.07 mm
V = 1243.9 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.036
Radiation source: fine-focus sealed tubeθmax = 66.9º
Monochromator: graphiteθmin = 5.0º
T = 299(2) Kh = −10→10
ω/2θ scansk = −10→1
Absorption correction: Psi-scan(North et al., 1968)l = −19→16
Tmin = 0.308, Tmax = 0.8413 standard reflections
4144 measured reflections every 120 min
2173 independent reflections intensity decay: none
1844 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042  w = 1/[σ2(Fo2) + (0.0774P)2 + 0.019P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max = 0.025
S = 1.07Δρmax = 0.19 e Å3
2173 reflectionsΔρmin = −0.29 e Å3
159 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0079 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1020 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.00 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6762 (3)0.7532 (3)0.05087 (15)0.0463 (6)
C20.7849 (3)0.7433 (3)0.11372 (17)0.0528 (6)
H20.83360.65210.12490.063*
C30.8186 (4)0.8716 (4)0.15884 (17)0.0627 (8)
C40.7505 (5)1.0087 (4)0.1436 (2)0.0763 (10)
H40.77621.09400.17470.092*
C50.6440 (5)1.0169 (4)0.0815 (2)0.0831 (11)
H50.59631.10880.07050.100*
C60.6061 (4)0.8896 (3)0.0346 (2)0.0673 (8)
H60.53370.8965−0.00750.081*
C70.6591 (3)0.4810 (3)0.01510 (14)0.0452 (5)
C80.5994 (3)0.3752 (3)−0.05047 (17)0.0516 (6)
C90.6935 (4)0.2659 (3)−0.08605 (18)0.0644 (8)
C100.6279 (6)0.1643 (4)−0.1412 (2)0.0887 (12)
H100.68850.0897−0.16500.106*
C110.4808 (7)0.1690 (4)−0.1617 (3)0.0992 (14)
H110.44150.0984−0.19910.119*
C120.3864 (5)0.2793 (5)−0.1272 (3)0.0955 (13)
H120.28410.2826−0.14110.115*
C130.4472 (4)0.3834 (4)−0.0721 (2)0.0695 (8)
H130.38630.4591−0.04950.083*
C140.8575 (5)0.2539 (5)−0.0653 (3)0.0923 (12)
H14A0.86930.2414−0.00590.111*
H14B0.90880.3444−0.08280.111*
H14C0.90030.1680−0.09360.111*
N10.6388 (3)0.6279 (2)−0.00053 (14)0.0488 (5)
H1N0.594 (4)0.650 (3)−0.045 (2)0.059*
O10.7197 (2)0.4315 (2)0.07953 (11)0.0598 (5)
Cl10.95205 (13)0.85850 (13)0.23813 (6)0.0996 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0581 (14)0.0483 (13)0.0324 (12)−0.0062 (11)0.0045 (10)0.0009 (10)
C20.0615 (15)0.0546 (14)0.0421 (13)−0.0076 (11)0.0013 (11)0.0021 (11)
C30.0766 (18)0.0721 (19)0.0394 (15)−0.0252 (15)0.0044 (13)−0.0071 (13)
C40.115 (3)0.0605 (18)0.0538 (19)−0.0194 (18)0.0127 (18)−0.0145 (15)
C50.125 (3)0.0505 (15)0.074 (2)0.0089 (18)0.012 (2)−0.0043 (16)
C60.092 (2)0.0568 (16)0.0532 (17)0.0043 (14)−0.0034 (16)0.0023 (13)
C70.0528 (13)0.0500 (13)0.0327 (13)−0.0022 (10)0.0041 (10)0.0020 (10)
C80.0721 (17)0.0465 (13)0.0361 (13)−0.0069 (11)−0.0036 (11)0.0030 (10)
C90.094 (2)0.0559 (15)0.0434 (15)0.0070 (15)−0.0037 (14)−0.0022 (12)
C100.149 (4)0.0572 (18)0.059 (2)0.006 (2)−0.020 (2)−0.0159 (15)
C110.162 (4)0.064 (2)0.071 (2)−0.034 (3)−0.034 (3)−0.0049 (18)
C120.103 (3)0.095 (3)0.089 (3)−0.039 (2)−0.039 (2)0.009 (2)
C130.0712 (19)0.0665 (17)0.071 (2)−0.0106 (15)−0.0094 (15)0.0044 (15)
C140.099 (3)0.109 (3)0.069 (2)0.035 (2)0.0100 (19)−0.012 (2)
N10.0627 (13)0.0512 (11)0.0324 (10)0.0005 (9)−0.0063 (10)0.0014 (9)
O10.0893 (13)0.0559 (10)0.0342 (10)0.0054 (9)−0.0073 (9)0.0033 (8)
Cl10.1114 (7)0.1195 (8)0.0678 (6)−0.0442 (6)−0.0276 (5)−0.0081 (5)

Geometric parameters (Å, °)

C1—C61.377 (4)C8—C131.388 (4)
C1—C21.391 (4)C8—C91.394 (4)
C1—N11.416 (3)C9—C101.384 (5)
C2—C31.374 (4)C9—C141.488 (5)
C2—H20.9300C10—C111.339 (7)
C3—C41.373 (5)C10—H100.9300
C3—Cl11.734 (3)C11—C121.394 (7)
C4—C51.368 (6)C11—H110.9300
C4—H40.9300C12—C131.382 (5)
C5—C61.392 (5)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H14A0.9600
C7—O11.240 (3)C14—H14B0.9600
C7—N11.332 (3)C14—H14C0.9600
C7—C81.499 (3)N1—H1N0.83 (4)
C6—C1—C2120.0 (2)C10—C9—C8117.3 (3)
C6—C1—N1117.9 (2)C10—C9—C14120.2 (3)
C2—C1—N1122.0 (2)C8—C9—C14122.5 (3)
C3—C2—C1118.4 (3)C11—C10—C9122.8 (4)
C3—C2—H2120.8C11—C10—H10118.6
C1—C2—H2120.8C9—C10—H10118.6
C4—C3—C2122.6 (3)C10—C11—C12120.3 (3)
C4—C3—Cl1119.1 (2)C10—C11—H11119.9
C2—C3—Cl1118.4 (3)C12—C11—H11119.9
C5—C4—C3118.4 (3)C13—C12—C11118.9 (4)
C5—C4—H4120.8C13—C12—H12120.5
C3—C4—H4120.8C11—C12—H12120.5
C4—C5—C6120.8 (3)C12—C13—C8120.0 (4)
C4—C5—H5119.6C12—C13—H13120.0
C6—C5—H5119.6C8—C13—H13120.0
C1—C6—C5119.7 (3)C9—C14—H14A109.5
C1—C6—H6120.1C9—C14—H14B109.5
C5—C6—H6120.1H14A—C14—H14B109.5
O1—C7—N1123.8 (2)C9—C14—H14C109.5
O1—C7—C8120.8 (2)H14A—C14—H14C109.5
N1—C7—C8115.3 (2)H14B—C14—H14C109.5
C13—C8—C9120.7 (3)C7—N1—C1128.3 (2)
C13—C8—C7118.8 (3)C7—N1—H1N117 (2)
C9—C8—C7120.5 (3)C1—N1—H1N115 (2)
C6—C1—C2—C30.5 (4)C7—C8—C9—C10174.9 (3)
N1—C1—C2—C3177.7 (2)C13—C8—C9—C14179.4 (3)
C1—C2—C3—C4−0.8 (4)C7—C8—C9—C14−3.6 (4)
C1—C2—C3—Cl1179.1 (2)C8—C9—C10—C110.9 (5)
C2—C3—C4—C50.7 (5)C14—C9—C10—C11179.5 (4)
Cl1—C3—C4—C5−179.2 (3)C9—C10—C11—C120.0 (6)
C3—C4—C5—C6−0.4 (5)C10—C11—C12—C130.3 (6)
C2—C1—C6—C5−0.3 (5)C11—C12—C13—C8−1.4 (6)
N1—C1—C6—C5−177.5 (3)C9—C8—C13—C122.3 (5)
C4—C5—C6—C10.2 (6)C7—C8—C13—C12−174.7 (3)
O1—C7—C8—C13121.7 (3)O1—C7—N1—C1−1.7 (4)
N1—C7—C8—C13−56.8 (3)C8—C7—N1—C1176.9 (2)
O1—C7—C8—C9−55.2 (3)C6—C1—N1—C7−160.9 (3)
N1—C7—C8—C9126.2 (3)C2—C1—N1—C721.9 (4)
C13—C8—C9—C10−2.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (4)2.12 (4)2.900 (3)157 (3)

Symmetry codes: (i) −y+1, x, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2228).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o541. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography