PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o787.
Published online 2008 April 2. doi:  10.1107/S1600536808008556
PMCID: PMC2961138

3-(3,5-Dichloro­anilinocarbon­yl)propionic acid

Abstract

The crystal structure of the title compound, C10H9Cl2NO3, consists of dimers due to inter­molecular O—H(...)O hydrogen bonding forming an R 2 2(8) ring through the carboxyl­ groups. These dimers are linked to each other by inter­molecular hydrogen bonds between the amine group and the adjacent carbonyl O atom. A single C—Cl(...)π inter­action is also observed between the chloro-substituted aromatic rings.

Related literature

For related literature, see: Nath et al. (2001 [triangle]); Wardell et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o787-scheme1.jpg

Experimental

Crystal data

  • C10H9Cl2NO3
  • M r = 262.08
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o787-efi1.jpg
  • a = 4.8568 (2) Å
  • b = 8.6677 (4) Å
  • c = 13.9038 (8) Å
  • α = 74.467 (3)°
  • β = 80.495 (2)°
  • γ = 82.712 (3)°
  • V = 554.09 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 296 (2) K
  • 0.25 × 0.12 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.870, T max = 0.945
  • 12157 measured reflections
  • 2971 independent reflections
  • 2065 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.125
  • S = 1.07
  • 2971 reflections
  • 172 parameters
  • Only H-atom coordinates refined
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle] [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008556/fj2109sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008556/fj2109Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for funding the purchase of the diffractometer. Dr Saqib Ali is also grateful to the PSF for financial support under project No. PSF/R&D/C–QU/Chem(270).

supplementary crystallographic information

Comment

Carboxylic acids catch the interest of people due to wide use of their metal complexes in biological and industrial field. On the other hand amino acids are one of the best sources to formulate the structure-activity correlation of metal derivatives as a biologically active agent (Nath et al., 2001) and widen the scope of investigation on the coordination behavior of the ligand in biological system. The title compound (I) has been prepared for complexation with different metals.

The structure of 3-(3-Nitrophenylaminocarbonyl)-propionic acid (Wardell et al., 2006) has been published. The title compound have replacement of 3-nitro with Cl and also an additional Cl-atom at 5-position of benzene ring. Therefore, the bond distances and packing of (I) is being compared with the mentioned reported structure. In (I) the C==O bond distances for carboxylate and carbonyl group have values of (C1==O2: 1.219 (3) Å) and (C4==O3: 1.225 (2) Å) in comparison to 1.223 (2) and 1.2214 (17) Å, respectively. The C—N bond distances are compareable within experimental errors. In both compounds similar intermolecular H-bonding (Table 1, Fig. 2) has been observed. The dihedral angle between the aromatic ring A(C5—C10) and (C1,C2,C3,O1,O2) have a value of 82.24 (8)°, whereas with (N1,C3,C4,O3) its value is 44.42 (12)°. The value of dihedral angle between (C1,C2,C3,O1,O2) and (N1,C3,C4,O3) is 38.36 (13)°. There exist a single C—Cl···π interaction at a distance of 3.5398 (11) Å [C7—CL1···CgAiii: symmetry code iii = -1 + x, y, z].

Experimental

3,5-Dichloroaniline (16.2 g, 0.1 mole) and succinic anhydride (10 g, 0.1 mole) were dissolved in glacial acetic acid separately and mixed. The mixed solution was stirred at room temperature for 24 h. The precipitated material was filtered, washed with distilled water and dried at 413–423 K. The title compound (I) was obtained by recrystallizing the dried product using aceton. (Yield: 90%, m.p. 437 K).

Figures

Fig. 1.
ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C10H9Cl2NO3 with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
Fig. 2.
The unit cell packing of (I) (Spek, 2003), showing the dimeric nature and the linkage of dimers.

Crystal data

C10H9Cl2NO3Z = 2
Mr = 262.08F000 = 268
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 4.8568 (2) ÅCell parameters from 2971 reflections
b = 8.6677 (4) Åθ = 1.5–29.2º
c = 13.9038 (8) ŵ = 0.58 mm1
α = 74.467 (3)ºT = 296 (2) K
β = 80.495 (2)ºNeedle, colourless
γ = 82.712 (3)º0.25 × 0.12 × 0.10 mm
V = 554.09 (5) Å3

Data collection

Bruker KappaAPEXII CCD diffractometer2971 independent reflections
Radiation source: fine-focus sealed tube2065 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
Detector resolution: 7.4 pixels mm-1θmax = 29.2º
T = 296(2) Kθmin = 1.5º
ω scansh = −6→6
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −11→11
Tmin = 0.870, Tmax = 0.945l = −19→18
12157 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040Only H-atom coordinates refined
wR(F2) = 0.125  w = 1/[σ2(Fo2) + (0.0492P)2 + 0.2158P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2971 reflectionsΔρmax = 0.27 e Å3
172 parametersΔρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.50817 (12)1.03658 (7)0.31192 (6)0.0754 (2)
Cl20.18783 (13)0.70434 (7)0.57110 (5)0.0704 (2)
O10.1715 (4)0.0213 (3)0.07439 (17)0.0910 (7)
H10.281 (8)−0.046 (4)0.039 (3)0.109*
O20.5114 (3)0.1840 (3)0.01798 (15)0.0829 (6)
O3−0.1931 (3)0.5285 (3)0.18654 (16)0.0814 (6)
N10.2023 (3)0.5827 (3)0.23147 (16)0.0607 (5)
H1A0.377 (6)0.563 (3)0.222 (2)0.073*
C10.2819 (4)0.1536 (4)0.06543 (17)0.0629 (7)
C20.1014 (4)0.2656 (4)0.1188 (2)0.0636 (7)
H2A−0.054 (6)0.295 (3)0.089 (2)0.076*
H2B0.031 (6)0.202 (3)0.186 (2)0.076*
C30.2413 (4)0.4095 (4)0.1194 (2)0.0653 (7)
H3A0.413 (6)0.381 (3)0.139 (2)0.078*
H3B0.275 (6)0.480 (3)0.051 (2)0.078*
C40.0626 (4)0.5118 (3)0.18182 (18)0.0588 (6)
C50.0789 (4)0.6763 (3)0.29919 (18)0.0525 (5)
C6−0.1369 (4)0.7959 (3)0.2744 (2)0.0558 (5)
H6−0.196 (5)0.813 (3)0.208 (2)0.067*
C7−0.2454 (4)0.8838 (2)0.3433 (2)0.0556 (6)
C8−0.1529 (4)0.8582 (2)0.4348 (2)0.0565 (6)
H8−0.234 (6)0.918 (3)0.4805 (19)0.068*
C90.0627 (4)0.7390 (2)0.45673 (19)0.0529 (5)
C100.1799 (4)0.6482 (2)0.39000 (19)0.0534 (5)
H100.323 (5)0.569 (3)0.4041 (18)0.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0467 (3)0.0511 (3)0.1229 (6)0.0104 (2)−0.0224 (3)−0.0129 (3)
Cl20.0688 (4)0.0548 (3)0.0942 (5)−0.0021 (3)−0.0275 (3)−0.0220 (3)
O10.0561 (10)0.1287 (19)0.1042 (16)−0.0241 (11)0.0243 (10)−0.0704 (14)
O20.0471 (9)0.1186 (16)0.0902 (13)−0.0130 (9)0.0204 (9)−0.0543 (12)
O30.0227 (6)0.1166 (16)0.1185 (15)0.0053 (8)−0.0064 (8)−0.0601 (13)
N10.0212 (7)0.0772 (13)0.0841 (14)0.0006 (7)−0.0002 (7)−0.0273 (11)
C10.0344 (9)0.110 (2)0.0533 (13)−0.0055 (11)−0.0032 (9)−0.0381 (13)
C20.0293 (9)0.104 (2)0.0631 (15)−0.0026 (10)−0.0004 (9)−0.0360 (14)
C30.0273 (9)0.0925 (19)0.0749 (16)0.0001 (10)0.0053 (9)−0.0290 (14)
C40.0240 (8)0.0786 (15)0.0716 (15)−0.0001 (8)−0.0007 (8)−0.0208 (12)
C50.0242 (7)0.0512 (11)0.0789 (15)−0.0053 (7)0.0001 (8)−0.0146 (10)
C60.0306 (8)0.0564 (13)0.0747 (15)−0.0046 (8)−0.0058 (9)−0.0074 (11)
C70.0301 (8)0.0381 (10)0.0934 (17)−0.0015 (7)−0.0078 (9)−0.0086 (10)
C80.0404 (10)0.0379 (11)0.0926 (18)−0.0046 (8)−0.0083 (10)−0.0187 (11)
C90.0406 (9)0.0367 (10)0.0822 (15)−0.0072 (8)−0.0133 (9)−0.0118 (10)
C100.0337 (9)0.0388 (10)0.0864 (17)−0.0017 (7)−0.0114 (9)−0.0125 (10)

Geometric parameters (Å, °)

Cl1—C71.737 (2)C3—C41.503 (3)
Cl2—C91.734 (2)C3—H3A0.91 (3)
O1—C11.295 (3)C3—H3B0.99 (3)
O1—H10.92 (4)C5—C101.380 (3)
O2—C11.219 (3)C5—C61.394 (3)
O3—C41.225 (2)C6—C71.378 (3)
N1—C41.343 (3)C6—H60.98 (3)
N1—C51.415 (3)C7—C81.372 (3)
N1—H1A0.84 (3)C8—C91.386 (3)
C1—C21.488 (3)C8—H80.93 (3)
C2—C31.497 (4)C9—C101.381 (3)
C2—H2A0.90 (3)C10—H100.92 (3)
C2—H2B0.97 (3)
C1—O1—H1113 (2)O3—C4—C3121.8 (2)
C4—N1—C5125.67 (16)N1—C4—C3115.51 (17)
C4—N1—H1A114.4 (19)C10—C5—C6120.6 (2)
C5—N1—H1A119.8 (19)C10—C5—N1118.47 (19)
O2—C1—O1123.4 (2)C6—C5—N1121.0 (2)
O2—C1—C2123.1 (3)C7—C6—C5118.0 (2)
O1—C1—C2113.5 (2)C7—C6—H6124.9 (15)
C1—C2—C3113.79 (18)C5—C6—H6117.1 (15)
C1—C2—H2A107.1 (18)C8—C7—C6123.18 (19)
C3—C2—H2A111.1 (18)C8—C7—Cl1118.42 (18)
C1—C2—H2B107.3 (16)C6—C7—Cl1118.39 (19)
C3—C2—H2B114.0 (16)C7—C8—C9117.3 (2)
H2A—C2—H2B103 (2)C7—C8—H8121.1 (17)
C2—C3—C4112.22 (18)C9—C8—H8121.6 (17)
C2—C3—H3A111.7 (18)C10—C9—C8121.8 (2)
C4—C3—H3A111.0 (17)C10—C9—Cl2119.54 (16)
C2—C3—H3B110.6 (17)C8—C9—Cl2118.68 (19)
C4—C3—H3B105.7 (17)C5—C10—C9119.2 (2)
H3A—C3—H3B105 (2)C5—C10—H10118.7 (16)
O3—C4—N1122.7 (2)C9—C10—H10122.1 (16)
O2—C1—C2—C3−7.0 (4)C5—C6—C7—C8−0.6 (3)
O1—C1—C2—C3172.9 (2)C5—C6—C7—Cl1178.35 (15)
C1—C2—C3—C4−174.8 (2)C6—C7—C8—C90.9 (3)
C5—N1—C4—O34.0 (4)Cl1—C7—C8—C9−178.06 (14)
C5—N1—C4—C3−176.1 (2)C7—C8—C9—C10−0.4 (3)
C2—C3—C4—O3−34.9 (4)C7—C8—C9—Cl2179.37 (15)
C2—C3—C4—N1145.1 (2)C6—C5—C10—C90.6 (3)
C4—N1—C5—C10133.9 (2)N1—C5—C10—C9179.70 (17)
C4—N1—C5—C6−47.0 (3)C8—C9—C10—C5−0.3 (3)
C10—C5—C6—C7−0.2 (3)Cl2—C9—C10—C5179.91 (15)
N1—C5—C6—C7−179.26 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.84 (3)2.07 (3)2.904 (2)175 (2)
O1—H1···O2ii0.92 (4)1.74 (4)2.658 (3)175 (4)
C7—Cl1···Cgiii1.737 (2)3.5398 (11)4.033 (2)93.34 (7)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2109).

References

  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Nath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev.215, 99–149.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o45–o46. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography